日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2011•江西模擬)若全集U=R,集合A={x|x2+3x-4<0},B={x|y=log3(x+2)},則CU(A∩B)=(  )
分析:分別解一元二次不等式、對數不等式,求得A和B,根據交集的定義求得A∩B,再根據補集的定義求得Cu(A∩B).
解答:解:集合A={x|x2+3x-4<0}={ x|(x+4)(x-1)>0}={ x|1<x<-4},
B={x|log3(2+x)}═{ x|x>-2}.
∴A∩B={ x|-2<x<1},∴Cu(A∩B)={x|x≤-2,或 x≥1},
故選 D.
點評:本題考查集合的表示方法、集合的補集,兩個集合的交集的定義和求法.一元二次不等式、對數不等式的解法,求出A和B 是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•江西模擬)在△ABC中,內角A,B,C的對邊分別是a,b,c,若a2-b2=
3
bc
,sinC=2
3
sinB
,則A=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•江西模擬)已知數列{an},{bn}分別是等差、等比數列,且a1=b1=1,a2=b2,a4=b3≠b4
①求數列{an},{bn}的通項公式;
②設Sn為數列{an}的前n項和,求{
1
Sn
}的前n項和Tn;
③設Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•江西模擬)已知數列{an}滿足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通項公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求證:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•江西模擬)已知函數f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數g(x)在區間(0,e]上的值域;
(2)是否存在實數a,對任意給定的x0∈(0,e],在區間[1,e]上都存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數y=F(x)圖象上任意不同的兩點A(x1,y1),B(x2,y2),如果對于函數y=F(x)圖象上的點M(x0,y0)(其中x0=
x1+x22
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數具備性質“L”,試判斷函數f(x)是不是具備性質“L”,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•江西模擬)設a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)=f(0)
,
(Ⅰ)求函數f(x)的單調遞增區間;
(Ⅱ)設△ABC三內角A,B,C所對邊分別為a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲精品视频在线免费 | 欧美激情小视频 | 97成人超碰 | 欧美精品一区二区三区在线四季 | 国产精品自产av一区二区三区 | 性开放xxxhd视频 | 亚洲国产一二区 | 成年人网站免费在线观看 | 国产久 | 自拍偷拍小视频 | 正在播放国产一区二区 | 美女污视频网站 | 久久精品国产免费 | www.久久 | 日本精品久久 | 亚洲欧美日韩另类一区二区 | 另类天堂 | 国产精品精品视频 | 国产日韩欧美在线观看 | 午夜精品一区二区三区在线观看 | 精品国产乱码久久久久久1区2区 | 国产精品2019 | 久久久精品国产 | 国产精品自产拍在线观看桃花 | 91社区在线高清 | 亚洲成人在线视频观看 | 在线无码 | 91伊人| 日韩欧美在线视频 | 欧美激情一区二区 | 精品国产91乱码一区二区三区 | 亚洲va中文字幕 | 国产视频久久精品 | 91麻豆精品一二三区在线 | 日韩精品一区二区在线 | 日韩国产欧美视频 | 日韩在线一区二区 | 久久精品一区二区三区四区 | h视频在线观看免费 | 一区二区三区回区在观看免费视频 | 午夜视频在线 |