【題目】先后擲一顆質地均勻的骰子(骰子的六個面上分別標有1,2,3,4,5,6)兩次,落在水平桌面上后,記正面朝上的點數分別為,記事件
為“
為偶數”,事件
為“
中有偶數且
”,則概率
( )
A. B.
C.
D.
【答案】A
【解析】
記正面朝上的點數分別為,列出基本事件總數共36種,找出滿足正面朝上的點數之和為偶數的共18種,再找出“
中有偶數且
”基本事件個數為6個,問題得解。
記正面朝上的點數分別為,列出基本事件總數如下:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),
共計:36種。
滿足“正面朝上的點數之和為偶數” 基本事件的共18種
滿足“中有偶數且
”基本事件個數為6個
所以
故選:A
科目:高中數學 來源: 題型:
【題目】某城市上年度電價為0.80元/千瓦時,年用電量為千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.7元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時),經測算,下調電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數為
.試問當地電價最低為多少元/千瓦時,可保證電力部門的收益比上年度至少增加20%.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,太極圖展現了一種相互轉化,相互統一的和諧美.定義:能夠將圓的周長和面積同時等分成兩部分的函數稱為圓
的一個“太極函數”.下列有關說法中正確的個數是( )個
①對圓的所有非常數函數的太極函數中,一定不能為偶函數;
②函數是圓
的一個太極函數;
③存在圓,使得
是圓
的太極函數;
④直線所對應的函數一定是圓
的太極函數.
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是定義在
上的奇函數.
(1)當時,
,若當
時,
恒成立,求
的最小值;
(2)若的圖像關于
對稱,且
時,
,求當
時,
的解析式;
(3)當時,
.若對任意的
,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列幾個命題:①若方程的兩個根異號,則實數
;②函數
是偶函數,但不是奇函數;③函數
在
上是減函數,則實數a的取值范圍是
;④ 方程
的根
滿足
,則m滿足的范圍
,其中不正確的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二年級組織成語聽說大賽,每班選10名同學參賽,要求每位同學回答5個成語,各位同學的得分總和算作本班成績,其中一班的張明同學參賽,他每道題答對的概率均為,且每道題答對與否互不影響.計分辦法規定為答對不超過3個題時,每答對一個得一分,超過三個,每多答對一個得兩分.
(1)求張明至少答對三道題的概率;
(2)設張明答完5道題得分為,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設、
為拋物線
上的兩點,
與
的中點的縱坐標為4,直線
的斜率為
.
(1)求拋物線的方程;
(2)已知點,
、
為拋物線
(除原點外)上的不同兩點,直線
、
的斜率分別為
,
,且滿足
,記拋物線
在
、
處的切線交于點
,線段
的中點為
,若
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com