【題目】如圖的幾何體中, 平面
,
平面
,
為等邊三角形,
,
為
的中點(diǎn),
為
的中點(diǎn).
(1)求證:平面平面
;
(2)求證:平面平面
.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)由中位線定理可得,可得
平面
,由線面垂直的性質(zhì)及線段長(zhǎng)度可證明而四邊形四邊形
為平行四邊形為平行四邊形,從而可得出
平面
,從而可得結(jié)論;(2)取
的中點(diǎn)
,連接
,
,先證明
,再證明
平面
,可得
平面
,從而平面
平面
.
試題解析:(1)∵平面
,
平面
∴.又∵
為
的中點(diǎn),
.
∴四邊形為平行四邊形.∴
.
而為
的中點(diǎn),
為
的中點(diǎn),∴
,又
.
∴平面平面
(2)取的中點(diǎn)
,連接
,
,由(1)知,
且
,
∴為平行四邊形,∴
,而
為等邊三角形,
為
的中點(diǎn),所以
,又
,所以
平面
,所以
平面
,從而平面
平面
.
【方法點(diǎn)晴】本題主要考查線面平行的判定定理、面面平行的判定定理,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明線面平行后,再證明面面平行的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在區(qū)間
上,
,
,
,
,
,
均可為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)
為“三角形函數(shù)”.已知函數(shù)
在區(qū)間
上是“三角形函數(shù)”,則實(shí)數(shù)
的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線
(
為參數(shù)),在以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為:
.
(Ⅰ)求曲線的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)過點(diǎn)且與直線平行的直線
交
于
,
兩點(diǎn),求點(diǎn)
到
,
兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的離心率為
,順次連接橢圓
的四個(gè)頂點(diǎn)得到的四邊形的面積為16.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的頂點(diǎn)
的直線
交橢圓于另一點(diǎn)
,交
軸于點(diǎn)
,若
、
、
成等比數(shù)列,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,
,
為邊
的中點(diǎn),將
沿直線
翻轉(zhuǎn)成
.若
為線段
的中點(diǎn),則在
翻折過程中:
①是定值;②點(diǎn)
在某個(gè)球面上運(yùn)動(dòng);
③存在某個(gè)位置,使;④存在某個(gè)位置,使
平面
.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,點(diǎn)
在函數(shù)
圖像上;
(1)證明是等差數(shù)列;
(2)若函數(shù),數(shù)列
滿足
,記
,求數(shù)列
前
項(xiàng)和
;
(3)是否存在實(shí)數(shù),使得當(dāng)
時(shí),
對(duì)任意
恒成立?若存在,求出最大的實(shí)數(shù)
,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為
,短軸的兩個(gè)端點(diǎn)分別為
.
(Ⅰ)若為等邊三角形,求橢圓
的方程;
(Ⅱ)若橢圓的短軸長(zhǎng)為
,過點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,
平面
,
//
,
,
,
分別為
線段,
的中點(diǎn).
(Ⅰ)求證: //平面
;
(Ⅱ)求證: 平面
;
(Ⅲ)寫出三棱錐與三棱錐
的體積之比.(結(jié)論不要求證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com