【題目】已知.
(1)當(dāng)時(shí),若函數(shù)
存在與直線
平行的切線,求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),
,若
的最小值是
,求
的最小值.
【答案】(1);(2)
的最小值為
.
【解析】
(1)求出導(dǎo)函數(shù),則
有實(shí)數(shù)解,由此可得
的范圍;
(2)考慮到的表達(dá)式,題意說明
在
上恒成立,且“=”可取,這樣問題又可轉(zhuǎn)化為即
恒成立,且
可取.,即
的最小值是0.
,為求
的零點(diǎn),由
得
,再由導(dǎo)數(shù)求得
的最小值是
.由于題中要求
的最小值,因此研究
時(shí)
的正負(fù),從而得
的最小值,可證得此最小值
,且為0時(shí)
只有一解
,這樣得出結(jié)論.
(1)因?yàn)?/span>,因?yàn)楹瘮?shù)
存在與直線
平行的切線,所以
在
上有解,即
在
上有解,所以
,得
,
故所求實(shí)數(shù)的取值范圍是
.
(2)由題意得:對(duì)任意
恒成立,且
可取,即
恒成立,且
可取.
令,即
,由
得
,令
.
當(dāng)時(shí),
,
在上,
;
在上,
.所以
.
令在
上遞減,所以
,故方程
有唯一解
即
,
綜上,當(dāng)滿足
的最小值為
,故
的最小值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(I)應(yīng)收集多少位男生樣本數(shù)據(jù)?
(II)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,
,
,
,
,
,試估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)的概率;
(Ⅲ)在樣本數(shù)據(jù)中,有165位男生的每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
男生 | 女士 | 總計(jì) | |
每周平均體育運(yùn)動(dòng)時(shí) 間不超過4小時(shí) | |||
每周平均體育運(yùn)動(dòng)時(shí) 間超過4小時(shí) | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | |
k | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對(duì)任意a,
恒有
,且當(dāng)
時(shí),有
.
Ⅰ
求
;
Ⅱ
求證:
在R上為增函數(shù);
Ⅲ
若關(guān)于x的不等式
對(duì)于任意
恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:(1)正方形的四條邊相等;(2)有兩個(gè)角是的三角形是等腰直角三角形;(3)正數(shù)的平方根不等于0;(4)至少有一個(gè)正整數(shù)是偶數(shù);是全稱量詞命題的有________;是存在量詞命題的有________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)函數(shù)在
上的最大值為3時(shí),求
的值;
(2)在(1)的條件下,若對(duì)任意的,函數(shù)
,
的圖像與直線
有且僅有兩個(gè)不同的交點(diǎn),試確定
的值.并求函數(shù)
在
上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),其中
為直線
的傾斜角.以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)寫出直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為
,直線
經(jīng)過點(diǎn)
且與曲線
相交于
兩點(diǎn),求
兩點(diǎn)間的距離
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(-1,1]上方程f(x)-mx-m=0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)m的取值范圍是()
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某IT從業(yè)者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:
(1)由散點(diǎn)圖知,可用回歸模型擬合
與
的關(guān)系,試根據(jù)附注提供的有關(guān)數(shù)據(jù)建立
關(guān)于
的回歸方程
(2)若把月收入不低于2萬(wàn)元稱為“高收入者”.
試?yán)茫?/span>1)的結(jié)果,估計(jì)他36歲時(shí)能否稱為“高收入者”?能否有95%的把握認(rèn)為年齡與收入有關(guān)系?
附注:①.參考數(shù)據(jù):,
,
,
,
,
,
,其中
,取
,
②.參考公式:回歸方程中斜率
和截距
的最小二乘估計(jì)分別為:
,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面
是矩形,面
底面
,且
是邊長(zhǎng)為
的等邊三角形,
在
上,且
面
.
(1)求證: 是
的中點(diǎn);
(2)在上是否存在點(diǎn)
,使二面角
為直角?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com