日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
精英家教網如圖∠A=90°,∠B=α,AH=h,α,h為常數,AH⊥BC于H,∠AHE=∠AHD=x,問當x取何值時,△DEH的面積最大?并求出最大面積.
分析:用正弦定理把,△DEH的面積用h,x,α,表示出來,再根據表達式選擇方法求最值.本題需要在兩三角形△AEH與△ADH中用正弦定理表示出EH與DH兩個邊.
解答:解:由已知∠EAH=
π
2
-α,∠DAH=α,∠HEA=π-x-(
π
2
-α)=
π
2
+α-x,同理∠ADH=π-α-x
由正弦定理
h
sin(
π
2
+α-x)
=
EH
sin(
π
2
-α)
即EH=
hcosα
cos(α-x)

同理可得DH=
hsinα
sin(α+x)

∴S=
1
2
×DH×EHsin2x=
1
2
×
hcosα
cos(α-x)
×
hsinα
sin(α+x)
×sin2x=
1
2
×h2×
1
4
sin2α
sin2α+sin2x
2
×sin2x
=
1
4
h2×(sin2α-
sin 2
sin2α+sin2x

當sin2x=1時,即當x取
π
4
時,△DEH的面積最大為
1
4
h2×(sin2α-
sin 2
sin2α+1

答:當x取
π
4
時,△DEH的面積最大為
1
4
h2×(sin2α-
sin 2
sin2α+1
點評:本題考查用三角函數的性質求最值,考查了角的變換、正弦定理、三角形的面積公式,本題充分體現了三角函數解題的特點,公式多,變形靈活.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖a,直角梯形ABCD中,∠A=∠B=90°,AB=BC=
12
AD=1,E是底邊AD的中點,沿CE將△CDE折起,使A-CE-D是直二面角(如圖b).在圖b中過D作DF⊥平面BCD,EF∥平面BCD.
①求證:DF?平面CDE;
②求點F到平面ACD的距離;
③求面ACE與面ACF所成二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖∠C=90°,AC=BC,M,N分別為BC和AB的中點,沿直線MN將△BMN折起,使二面角B'-MN-B為60°,則斜線B'A與平面ABC所成角的正切值為
3
5
3
5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖∠A=90°,∠B=α,AH=h,α,h為常數,AH⊥BC于H,∠AHE=∠AHD=x,問當x取何值時,△DEH的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學復習(第3章 三角函數與三角恒等變換):3.14 三角最值問題(解析版) 題型:解答題

如圖∠A=90°,∠B=α,AH=h,α,h為常數,AH⊥BC于H,∠AHE=∠AHD=x,問當x取何值時,△DEH的面積最大?并求出最大面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久精品网 | 亚洲一区免费视频 | 亚洲精品一二区 | 亚洲日本在线观看 | 国产精品久久久久久一区二区三区 | 国产精品1区2区 | 日韩一区二区三区在线 | 亚洲a人 | 美女扒开内裤让男人桶 | 九九精品视频在线观看 | 日韩精品视频在线 | 久久h | 欧美在线一区二区 | 国产一级视频免费播放 | 在线免费观看黄色小视频 | 国产精品高清网站 | 久久99久久99精品 | 国产精品视频播放 | 美日韩一区 | 永久精品 | 91资源在线观看 | 天天综合网91| 成人看片在线 | 国产在线一区二区三区 | 日韩国产在线观看 | 青青草视频免费在线观看 | 毛片网络 | 一区二区三区精品视频 | 国产精品一区二区在线观看网站 | www312aⅴ欧美在线看 | 久久综合影院 | 国产成人精品一区二区三区四区 | 国产欧美久久久久久 | 亚洲综合视频一区 | 久久99深爱久久99精品 | 国产精品视频免费观看 | 呦呦在线视频 | 四虎最新网站 | 成人免费一区二区三区视频网站 | 日本中文字幕电影 | 欧美www.|