日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2x+
a
2x
-1
(a為實數).
(Ⅰ)當a=0時,求方程|f(x)|=
1
2
的根;
(Ⅱ)當a=-1時,
(。┤魧τ谌我鈚∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范圍;
(ⅱ)設函數g(x)=2x+b,若對任意的x1∈[0,1],總存在著x2∈[0,1],使得f(x1)=g(x2),求實數b的取值范圍.
分析:(1)當a=0時,f(x)=2x-1,代入方程即可求解;
(2)當a=-1時,依據函數單調性,不等式f(t2-2t)-f(2t2-k)>0恒成立,可化為t2-2t>2t2-k恒成立,從而轉化為k>(t2+2t)max
(3)該問題可轉化為當x∈[0,1]時,f(x)的值域為g(x)值域的子集,利用單調性易求兩函數值域,由集合包含關系可得到不等式組,解出即可.
解答:解:(Ⅰ)當a=0時,f(x)=2x-1,
由題意得|2x-1|=
1
2
,
所以2x-1=
1
2
2x-1=-
1
2
,
解得x=log2
3
2
或x=-1.
(Ⅱ)當a=-1時,f(x)=2x-
1
2x
-1
,該函數在R上單調遞增.
(。┎坏仁絝(t2-2t)-f(2t2-k)>0恒成立,即f(t2-2t)>f(2t2-k)恒成立,即t2-2t>2t2-k,
從而k>(t2+2t)max
又當t∈(1,4]時,(t2+2t)max=42+2×4=24,所以k>24.
(ⅱ)當x∈[0,1]時,g(x)=2x+b的值域為[b,2+b],
當x∈[0,1]時,f(x)=2x-
1
2x
-1
的值域為[-1,
1
2
]
,
根據題意可得[b,2+b]?[-1,
1
2
]
,
從而
b+2≥
1
2
b≤-1
解得-
3
2
≤b≤-1

故實數b的取值范圍為:-
3
2
≤b≤-1
點評:本題考查指數方程的求解、函數恒成立及函數零點問題,考查學生分析問題解決問題的能力,綜合性強,難度大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=
2x+1x2+2

(Ⅰ)求f(x)的單調區間和極值;
(Ⅱ)若對一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2x
|x|+1
(x∈R)
,區間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數對(a,b)有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•重慶三模)設函數f(x)=
2x+3
3x-1
,則f-1(1)
=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2
x+2
,點A0表示原點,點An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夾角[其中
i
=(1,0)]
,設Sn=tanθ1+tanθ2+…+tanθn,則
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,則x0等于( 。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本欧美大片 | 午夜亚洲福利 | 亚洲欧美一| 成人免费看黄 | 日本爱爱网站 | 国产精品极品美女在线观看免费 | 久久av资源 | 三级av网站 | 黄瓜av| 亚洲成人网络 | 欧美寡妇偷汉性猛交 | 中文字幕一区二区在线观看 | 毛片av网站| 国产成人在线视频 | 国产最新地址 | 求av网址 | 黄色免费观看网站 | 久久久久网站 | 欧美高清一区 | 伊人免费网 | 亚洲欧美精品 | 欧美激情综合色综合啪啪五月 | 精品日韩欧美一区二区三区在线播放 | 久久99精品久久久 | 亚洲欧美在线观看 | 男人的天堂一级片 | 日韩污视频在线观看 | 伊人影院在线观看 | 久草青青 | 黄色av资源 | 欧美精品久久久 | 国产成人在线网站 | 欧美日韩精品一区 | 91电影在线| 久久久亚洲 | 中文字幕av一区二区 | 国产伦精品一区二区三区视频网站 | 国产在线看片 | 一本久久a久久精品亚洲 | 欧美日韩精品一区二区在线观看 | 欧美一区二区大片 |