日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1

(1)證明:AB=AC
(2)設二面角A-BD-C為60°,求B1C與平面BCD所成的角的大小

(1)詳見解析,(2)

解析試題分析:(1)證明AB=AC,往往轉化為證明對應線段垂直,即證邊上中線垂直.取BC中點F,連接EF,AF,易得ADEF為平行四邊形,從而AF//DE. 又DE⊥平面,可得AF⊥BC.(2)求直線與平面所成角的關鍵在于找面的垂線.而面的垂線,往往從面面垂直的性質定理中取到.觀察圖形可知,BC⊥平面DEF,從而平面BCD⊥平面DEF.過作兩平面的交線的垂線就是平面BCD的垂線.因為本題三維垂直關系已知,所以也可利用空間向量進行求解.已知條件的二面角與所求線面角有一個相同的平面,這也簡化了運算量.
試題解析:

解法一:(1)取BC中點F,連接EF,則EF,從而EFDA。
連接AF,則ADEF為平行四邊形,從而AF//DE。又DE⊥平面,故AF⊥平面,從而AF⊥BC,即AF為BC的垂直平分線,所以AB=AC。       5分
(2)作AG⊥BD,垂足為G,連接CG。由三垂線定理知CG⊥BD,故∠AGC為二面角A-BD-C的平面角。由題設知,∠AGC=600..
設AC=2,則AG=。又AB=2,BC=,故AF=
得2AD=,解得AD=。       9分
故AD=AF。又AD⊥AF,所以四邊形ADEF為正方形。
因為BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
連接AE、DF,設AE∩DF=H,則EH⊥DF,EH⊥平面BCD。
連接CH,則∠ECH為與平面BCD所成的角。.   
因ADEF為正方形,AD=,故EH=1,又EC==2,
所以∠ECH=300,即與平面BCD所成的角為300.        12分
解法二:

(1)以A為坐標原點,射線AB為x軸的正半軸,建立如圖所示的直角坐標系A—xyz。
設B(1,0,0),C(0,b,0),D(0,0,c),則(1,0,2c),E(,,c).
于是=(,,0),=(-1,b,0).由DE⊥平面知DE⊥BC, =0,求得b=1,所以    AB=AC。       5分
(2)設平面BCD的法向量
=(-1,1, 0),
=(-1,0,c),故
令x=1,則y=1,z=,=(1,1,).
又平面的法向量=(0,1,0)
由二面角為60°知,=60°,
故 °,求得           9分
于是  , 
,
°
所以與平面所成的角為30°       12分
考點:線面垂直、面面垂直的判定與性質定理

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,平面,,且,點上.
(1)求證:
(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,

(1)求異面直線所成角的大小;
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖1,在Rt中,, D、E分別是上的點,且,將沿折起到的位置,使,如圖2.

(1)求證:平面平面;
(2)若,求與平面所成角的余弦值;
(3)當點在何處時,的長度最小,并求出最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖, 已知四邊形ABCDBCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求證:AG平面BDE;
(2)求:二面角GDEB的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且DE=2PE.

(1)求證:BE⊥平面PCD;
(2)求二面角A一PD-B的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直角梯形中,,點分別是的中點,點上,沿將梯形翻折,使平面平面.

(1)當最小時,求證:;
(2)當時,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD,EDC的中點,將它沿AE折成直二面角D-AE-B.

(1)求證:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在三棱錐SABC中,底面是邊長為2的正三角形,點S在底面ABC上的射影O恰是AC的中點,側棱SB和底面成45°角.

(1)若D為側棱SB上一點,當為何值時,CD⊥AB;
(2)求二面角S-BC-A的余弦值大。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产成人一区二区 | 玖玖精品| 精品视频一区二区三区 | 99久久精品一区二区 | 日韩一区二区三区在线 | 成年人性视频 | 日韩国产欧美视频 | 日韩三级免费观看 | 毛片入口| 国产精品久久久久久吹潮 | 国产一区中文字幕 | 日本a v在线播放 | 中文字幕亚洲区 | 狠狠久 | 国产成人精品久久二区二区91 | 成人一边做一边爽爽视频 | 日本三级网 | 黑人巨大精品欧美一区二区免费 | 国产最新网址 | 看片一区 | 国产精品自拍一区 | 欧美在线视频网站 | 99久久久99久久国产片鸭王 | 亚洲狠狠| 国产在线精品一区二区三区 | 欧美 日韩 高清 | 日韩成人免费在线 | 精久视频| 成年免费视频黄网站在线观看 | 欧美一级在线观看 | 久久久久久久久久久久久女国产乱 | 狠狠狠干| 一区二区三区在线免费看 | 久久伊人草 | 国产成人精品一区二区三区四区 | 成人免费的视频 | 在线观看成人精品 | 欧美a一级| 国产精品毛片一区二区三区 | 老妇女av| 日韩精品免费视频 |