【題目】某車間將10名技工平均分為甲、乙兩組加工某種零件,在單位時間內(nèi)每名技工加工零件若干,其中合格零件的個數(shù)如下表:
1號 | 2號 | 3號 | 4號 | 5號 | |
甲組 | 4 | 5 | 7 | 9 | 10 |
乙組 | 5 | 6 | 7 | 8 | 9 |
(1)分別求出甲、乙兩組技工在單位時間內(nèi)完成合格零件的平均數(shù)及方差,并由此分析兩組技工的技術(shù)水平;
(2)質(zhì)檢部門從該車間甲、乙兩組中各隨機(jī)抽取一名技工,對其加工的零件進(jìn)行檢測,若兩人完成合格零件個數(shù)之和超過12件,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
【答案】(1)兩組技工的總體水平相同,甲組技工的技術(shù)水平差異比乙組大 (2)
【解析】
試題分析:解:(1)依題意,
2分
3分
4分
因為,
所以,兩組技工的總體水平相同,甲組技工的技術(shù)水平差異比乙組大 6分
(2)記該車間“質(zhì)量合格”為事件A,則從甲、乙兩組中各抽取1名技工完成合格零件個數(shù)的基本事件為:(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共25種 8分
事件A包含的基本事件為:(4,9),(5,8),(5,9),(7,6),(7,7),(7,8),(7,9),
(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),
(10,9)共17種 10分
所以11分
答:該車間“質(zhì)量合格”的概率為12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選)下列說法中錯誤的是( )
A.不共面的四點(diǎn)中,任意三點(diǎn)不共線
B.三條兩兩相交的直線在同一平面內(nèi)
C.有三個不同公共點(diǎn)的兩個平面重合
D.依次首尾相接的四條線段不一定共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)要完成下列兩項調(diào)查:①從某社區(qū)70戶高收入家庭、335戶中等收入家庭、95戶低收入家庭中選出100戶,調(diào)查社會購買能力的某項指標(biāo);②從某中學(xué)的15名藝術(shù)特長生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況.這兩項調(diào)查宜采用的抽取方法是( )
A.①簡單隨機(jī)抽樣,②分層隨機(jī)抽樣B.①分層隨機(jī)抽樣,②簡單隨機(jī)抽樣
C.①②都用簡單隨機(jī)抽樣D.①②都用分層隨機(jī)抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個工人每天可生產(chǎn)
部件6件,或
部件3件,或
部件2件.該企業(yè)計劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)
部件的人數(shù)與生產(chǎn)
部件的人數(shù)成正比,比例系數(shù)為
(
為正整數(shù)).
(1)設(shè)生產(chǎn)部件的人數(shù)為
,分別寫出完成
三件部件生產(chǎn)需要的時間;
(2)假設(shè)這三種部件的生產(chǎn)同時開工,試確定正整數(shù)的值,使完成訂單任務(wù)的時間最短,并給出時間最短時具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項為的正項數(shù)列
滿足
,
.
(1)若,
,
,求
的取值范圍;
(2)設(shè)數(shù)列是公比為
的等比數(shù)列,
為數(shù)列
前
項的和.若
,
,求
的取值范圍;
(3)若,
,
,
(
)成等差數(shù)列,且
,求正整數(shù)
的最小值,以及
取最小值時相應(yīng)數(shù)列
,
,
,
的公差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
(
為參數(shù)),以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
,2倍后得到曲線
,試寫出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知函數(shù)(
,
)的圖像關(guān)于直線x=
對稱,最大值為3,且圖像上相鄰兩個最高點(diǎn)的距離為
.
(1)求的最小正周期;
(2)求函數(shù)的解析式;
(3)若,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
在平面直角坐標(biāo)系xOy中,已知曲線,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線
.
(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的
、2倍后得到曲線
,試寫出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(2)在曲線上求一點(diǎn)P,使點(diǎn)P到直線
的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)有兩個定點(diǎn)A(1,0),B(1,﹣2),設(shè)點(diǎn)P到A、B的距離分別為,且
(I)求點(diǎn)P的軌跡C的方程;
(II)是否存在過點(diǎn)A的直線與軌跡C相交于E、F兩點(diǎn),滿足
(O為坐標(biāo)原點(diǎn)).若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com