【題目】已知.
(1)當為常數,且
在區間
變化時,求
的最小值
;
(2)證明:對任意的,總存在
,使得
.
科目:高中數學 來源: 題型:
【題目】某研究型學習小組調查研究”中學生使用智能手機對學習的影響”.部分統計數據如下表:
參考數據:
參考公式: ,其中
(Ⅰ)試根據以上數據,運用獨立性檢驗思想,指出有多大把握認為中學生使用智能手機對學習有影響?
(Ⅱ)研究小組將該樣本中使用智能手機且成績優秀的4位同學記為組,不使用智能手機且成績優秀的8位同學記為
組,計劃從
組推選的2人和
組推選的3人中,隨機挑選兩人在學校升旗儀式上作“國旗下講話”分享學習經驗.求挑選的兩人恰好分別來自
、
兩組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某批產品中,有放回地抽取產品兩次,每次隨機抽取1件,假設事件A:“取出的2件產品中至多有1件是二等品”,其概率P(A)=0.96.
(1)求從該批產品中任取1件是二等品的概率p.
(2)若該批產品共100件,從中無放回抽取2件產品,ξ表示取出的2件產品中二等品的件數.求ξ的分布列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現從某學校高一年級男生中隨機抽取50名測量身高,測量發現被測學生身高全部介于和
之間,將測量結果按如下方式分成6組:第1組
,第2組
,…,第6組
,下圖是按上述分組方法得到的頻率分布直方圖.
(1)求這50名男生身高的中位數,并估計該校高一全體男生的平均身高;
(2)求這50名男生當中身高不低于176的人數,并且在這50名身高不低于176
的男生中任意抽取2人,求這2人身高都低于180
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程.
已知曲線的參數方程為
(
為參數),以直角坐標系原點為極點,
軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)若直線的極坐標方程為,求直線被曲線
截得的弦長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某旅游區擬建一主題游樂園,該游樂區為五邊形區域ABCDE,其中三角形區域ABE為主題游樂區,四邊形區域為BCDE為休閑游樂區,AB、BC,CD,DE,EA,BE為游樂園的主要道路(不考慮寬度)..
(I)求道路BE的長度;
(Ⅱ)求道路AB,AE長度之和的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我們用圓的性質類比球的性質如下:
①p:圓心與弦(非直徑)中點的連線垂直于弦; q:球心與小圓截面圓心的連線垂直于截面.
②p:與圓心距離相等的兩條弦長相等; q:與球心距離相等的兩個截面圓的面積相等.
③p:圓的周長為C=πd(d是圓的直徑); q:球的表面積為S=πd2(d是球的直徑).
④p:圓的面積為S=R·πd(R,d是圓的半徑與直徑); q:球的體積為V=
R·πd2(R,d是球的半徑與直徑).
則上面的四組命題中,其中類比得到的q是真命題的有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮沿海登陸,造成165.17萬人受災, 5.6萬人緊急轉移安置,288間房屋倒塌,46.5千公頃農田受災,直接經濟損失12.99億元,距離陸豐市222千米的梅州也受到了臺風的影響,適逢暑假,小明調查了梅州某小區的50戶居民由于臺風造成的經濟損失,將收集的數據分成,
,
,
,
五組,并作出如下頻率分布直方圖(圖1):
(1)試根據頻率分布直方圖估計小區平均每戶居民的平均損失;
(同一組中的數據用該組區間的中點值作代表);
(2)小明向班級同學發出倡議,為該小區居民捐款,現從損失超過6000元的居民中隨機
抽出2戶進行捐款援助,求抽出的2戶居民損失均超過8000元的概率;
(3)臺風后區委會號召該小區居民為臺風重災區捐款,小明調查的50戶居民捐款情況如下表,
在圖2表格空白外填寫正確數字,并說明是否有95%以上的把握認為捐款數額超過或
不超過500元和自身經濟損失是否超過4000元有關?
經濟損失不超過4000元 | 經濟損失超過4000元 | 合計 | |
捐款超過500元 | 30 | ||
捐款不超過500元 | 6 | ||
合計 |
附:臨界值參考公式: ,
.
0.15 | 0.10 | 0.05 /td> | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數之比為,且成績分布在
,分數在
以上(含
)的同學獲獎. 按文理科用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)填寫下面的列聯表,能否有超過
的把握認為“獲獎與學生的文理科有關”?
(2)將上述調査所得的頻率視為概率,現從參賽學生中,任意抽取名學生,記“獲獎”學生人數為
,求
的分布列及數學期望.
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
附表及公式:
,其中
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com