日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=2,CE∥AF,AC⊥CE,
(I)求證:CM∥平面BDF;
(II)求異面直線CM與FD所成角的余弦值的大小;
(III)求二面角A﹣DF﹣B的大小.
解:(I)證明:因為面ABCD⊥面ACEF,面ABCD∩面ACEF=AC,且AC⊥CE,
∴CE⊥面ABCD.
所以CD、CB、CE兩兩垂直.可建立如圖空間直角坐標系C﹣xyz.
則(2,0,0),A(2,2,0),B(0,2,0),F(2,2,),O(1,1,0)
,可求得M(
=(),).
所以
∴CM∥OF
∵OF平面BDF
∴CM∥平面BDF 。
(II)因為=(),),
所以cos<>=
異面直線CM與FD所成角的余弦值的大小為
(III)因為CD⊥平面ADF,所以平面ADF的法向量=(2,0,0).
設平面BDF的法向量為=(x,y,1)

所以法向量=(﹣,1)
所以所以<=
由圖可知二面角A﹣DF﹣B為銳角,所以二面角A﹣DF﹣B大小為
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是線段EF的中點.
(Ⅰ)求證AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知正方形ABCD的邊長為1,過正方形中心O的直線MN分別交正方形的邊AB,CD于M,N,則當
MN
BN
最小時,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求證:CM∥平面BDF;
(II)求異面直線CM與FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在線段AC上找一點P,使PF與AD所成的角為60°,試確定點P的位置.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳二模)如圖,已知正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,其中A與A'重合,且BB′<DD′<CC′.
(1)證明AD′∥平面BB′C′C,并指出四邊形AB′C′D′的形狀;
(2)如果四邊形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的邊長為
6
,求平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 午夜精品一区二区三区免费视频 | 国产一二三区在线播放 | 成人免费高清视频 | 91精品在线看 | 欧美激情综合色综合啪啪五月 | 久久国产在线视频 | 国产成人在线看 | 国产一级黄色大片 | 久久草视频 | 欧美一级免费 | 国精产品一区二区三区 | 亚洲免费一区 | 精品三级 | 日韩视频免费观看 | 成人一区二区三区在线观看 | 99福利视频 | 亚洲高清视频在线 | 久久久国产一区二区三区 | 涩久久 | 伊人免费观看视频 | 黄色网址免费 | 久久久精品影院 | 国产一区二区三区四区在线观看 | 欧美成人不卡 | 日本不卡一区二区三区在线观看 | 欧州毛片 | 国产精品一区免费观看 | 干比网 | 成人在线精品视频 | 久久亚洲一区 | 日韩欧美国产一区二区 | 国产ts余喵喵和直男多体位 | 先锋资源中文字幕 | 涩久久| 四虎永久网址 | 久久1区| 国产精品久久久久久久久久 | 嫩草久久| 亚洲一区二区精品视频 | 久久激情视频 | 久久成人免费视频 |