【題目】在直角坐標系中,曲線
的參數方程為
(
為參數,
).在以坐標原點為極點
軸正半軸為極軸的極坐標系中,曲線
(1)說明是哪一種曲線,并將
的方程化為極坐標方程;
(2)直線的極坐標方程為
,其中
滿足
,若曲線
與
的公共點都在
上,求
.
【答案】(1)圓; ρ2-2ρsin θ+1-a2=0.(2) a=1.
【解析】
(1)根據三角函數平方關系消參數得C1的普通方程,再根據x=ρcos θ,y=ρsin θ化為極坐標方程,(2)聯立極坐標方程解得16cos2θ-8sin θcos θ+1-a2=0,再根據tan θ=2化簡得1-a2=0,解得a=1.
(1)消去參數t得到C1的普通方程為x2+(y-1)2=a2,則C1是以(0,1)為圓心,a為半徑的圓.
將x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的極坐標方程為ρ2-2ρsin θ+1-a2=0.
(2)曲線C1,C2的公共點的極坐標滿足方程組,若ρ≠0,由方程組得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,得16cos2θ-8sin θcos θ=0,從而1-a2=0,解得a=-1(舍去)或a=1.當a=1時,極點也為C1,C2的公共點,且在C3上.所以a=1.
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=
sin A,則a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根據正弦定理把轉化為邊的關系,進而根據△ABC的周長,聯立方程組,可求出a的值.
根據正弦定理,可化為
∵△ABC的周長為,
∴聯立方程組,
解得a=2.
故選:B
【點睛】
(1)在三角形中根據已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉化,以達到求解的目的.
(2)求角的大小時,在得到角的某一個三角函數值后,還要根據角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.
【題型】單選題
【結束】
7
【題目】已知數列{an}中,an=n2-kn(n∈N*),且{an}單調遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.問:在棱PD上是否存在一點E,使得CE∥平面PAB?若存在,求出E點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】北京101中學校園內有一個“少年湖”,湖的兩側有一個音樂教室和一個圖書館,如圖,若設音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學選定了與A,B不共線的C處,構成△ABC,以下是測量的數據的不同方案:①測量∠A,AC,BC;②測量∠A,∠B,BC;③測量∠C,AC,BC;④測量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐A﹣BCD中,側棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為 ,
,
, 則三棱錐A﹣BCD的外接球的體積為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求B點在AM上,D點在AN上,且對角線MN過點C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長應在什么范圍內?
(2)當DN的長度為多少時,矩形花壇AMPN的面積最小?并求出最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x-1)2+(y-2)2=2,過點P(2,-1)作圓C的切線,切點為A,B.
(1)求直線PA,PB的方程;
(2)求過P點的圓C的切線長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com