【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至
處,此時測得其東北方向與它相距
海里的
處有一外國船只,且
島位于海監(jiān)船正東
海里處.
(1)求此時該外國船只與島的距離;
(2)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行,為了將該船攔截在離
島
海里處,不讓其進入
島
海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):
,
)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為
,對于任意的
都有
,設(shè)
時,
.
(1)求;
(2)證明:對于任意的,
;
(3)當(dāng)時,若不等式
在
上恒定成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
為直角,
.沿
的中位線
,將平面
折起,使得
,得到四棱錐
.
(Ⅰ)求證: 平面
;
(Ⅱ)求三棱錐的體積;
(Ⅲ)是棱
的中點,過
做平面
與平面
平行,設(shè)平面
截四棱錐
所得截面面積為
,試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補充的條件為( )
① ②
A. ①n3≥1 000? ②n3<1 000?
B. ①n3≤1 000? ②n3≥1 000?
C. ①n3<1 000? ②n3≥1 000?
D. ①n3<1 000? ②n3<1 000?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面
底面
,
為正三角形,
,
,點
,
分別為線段
、
的中點,
、
分別為線段
、
上一點,且
,
.
(1)確定點的位置,使得
平面
;
(2)試問:直線上是否存在一點
,使得平面
與平面
所成銳二面角的大小為
,若存在,求
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn) ,
兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,
產(chǎn)品的利潤與投資關(guān)系如圖(1)所示;
產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤和投資單位:萬元).
(1)分別將 ,
兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到 萬元資金,并將全部投入
,
兩種產(chǎn)品的生產(chǎn).問怎樣分配這
萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,圓
是以
的中點為圓心,
為半徑的圓.
(Ⅰ)若圓的切線在
軸和
軸上截距相等,求切線方程;
(Ⅱ)若是圓
外一點,從
向圓
引切線
,
為切點,
為坐標(biāo)原點,且有
,求使
最小的點
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,過
分別作曲線
與
的切線
,且
與
關(guān)于
軸對稱,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com