(本小題滿分12分)
已知點為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點
,使得
總能被
軸平分
(1);(2)見解析.
【解析】(Ⅰ)利用相關點法把所求點的問題轉化已知動點問題,從而得到曲線的軌跡方程;(Ⅱ)聯立方程,利用韋達定理及條件轉化為點的坐標關系,從而求出點的坐標。
解:(1)設為曲線
上的任意一點,則點
在圓
上,
∴,曲線
的方程為
. ………………2分
(2)設點的坐標為
,直線
的方程為
, ………………3分
代入曲線的方程
,可得
,……5分
∵,∴
,
∴直線與曲線
總有兩個公共點.(也可根據點M在橢圓
的內部得到此結論)
………………6分
設點,
的坐標分別
,
,則
,
要使被
軸平分,只要
, ………………9分
即,
, ………………10分
也就是,
,
即,即只要
………………12分
當時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點,使得
總能被
軸平分.
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com