【題目】設P1 , P2 , …Pn為平面α內的n個點,在平面α內的所有點中,若點P到點P1 , P2 , …Pn的距離之和最小,則稱點P為P1 , P2 , …Pn的一個“中位點”,例如,線段AB上的任意點都是端點A,B的中位點,現有下列命題:
①若三個點A、B、C共線,C在線段AB上,則C是A,B,C的中位點;
②直角三角形斜邊的中點是該直角三角形三個頂點的中位點;
③若四個點A、B、C、D共線,則它們的中位點存在且唯一;
④梯形對角線的交點是該梯形四個頂點的唯一中位點.
其中的真命題是(寫出所有真命題的序號).
【答案】①④
【解析】解:①若三個點A、B、C共線,若C在線段AB上,則線段AB上任一點都為“中位點”,C也不例外,則C是A,B,C的中位點,①正確;
②舉一個反例,如邊長為3,4,5的直角三角形ABC,此直角三角形的斜邊的中點到三個頂點的距離之和為5+2.5=7.5,而直角頂點到三個頂點的距離之和為7,所以直角三角形斜邊的中點不是該直角三角形三個頂點的中位點,故②錯誤;
③若四個點A、B、C、D共線,則它們的中位點是中間兩點連線段上的任意一個點,故它們的中位點存在但不唯一,故③錯誤;
④如圖,在梯形ABCD中,對角線的交點O,P是任意一點,則根據三角形兩邊之和大于第三邊得
PA+PB+PC+PD≥AC+BD=OA+OB+OC+OD,所以梯形對角線的交點是該梯形四個頂點的唯一中位點,故④正確.
所以答案是:①④.
【考點精析】通過靈活運用命題的真假判斷與應用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系即可以解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,兩座建筑物的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9
和15
,從建筑物
的頂部
看建筑物
的視角
.
(1)求的長度;
(2)在線段上取一點
點
與點
不重合),從點
看這兩座建筑物的視角分別為
問點
在何處時,
最小?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)同時滿足:
①對于定義域上的任意x恒有f(x)+f(﹣x)=0,
②對于定義域上的任意x1,x2,當x1≠x2時,恒有0,則稱函數f(x)為“理想函數”.
給出下列四個函數中①f(x); ②f(x)
; ③f(x)
;④f(x)
,
能被稱為“理想函數”的有_______________(填相應的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)對任意實數x,y恒有f(x+y)=f(x)+f(y)且當x>0,f(x)<0.
給出下列四個結論:
①f(0)=0;②f(x)為偶函數;
③f(x)為R上減函數;④f(x)為R上增函數.
其中正確的結論是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點
,焦點在
軸上,它的一個頂點恰好是拋物線
的焦點,它的離心率是雙曲線
的離心率的倒數.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓的右焦點
作直線
交橢圓
于
、
兩點,交
軸于
點,若
,
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形的面積可無限接近圓的面積,并創立了“割圓術”,利用“割圓術”,劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為( )
(參考數據:)
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學為研究函數的性質,構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設
,則
.請你參考這些信息,推知函數
的圖象的對稱軸是______;函數
的零點的個數是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com