【題目】已知橢圓
,其焦距為2,離心率為
(1)求橢圓的方程;
(2)設橢圓的右焦點為,
為
軸上一點,滿足
,過點
作斜率不為0的直線
交橢圓于
兩點,求
面積
的最大值.
科目:高中數學 來源: 題型:
【題目】設函數,
(
).
(1)當時,若函數
與
的圖象在
處有相同的切線,求
的值;
(2)當時,若對任意
和任意
,總存在不相等的正實數
,使得
,求
的最小值;
(3)當時,設函數
與
的圖象交于
兩點.求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年4月1日,新華通訊社發布:國務院決定設立河北雄安新區.消息一出,河北省雄縣、容城、安新3縣及周邊部分區域迅速成為海內外高度關注的焦點.
(1)為了響應國家號召,北京市某高校立即在所屬的8個學院的教職員工中作了“是否愿意將學校整體搬遷至雄安新區”的問卷調查,8個學院的調查人數及統計數據如下:
調查人數( | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整體搬遷人數( | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
請根據上表提供的數據,用最小二乘法求出變量關于變量
的線性回歸方程
保留小數點后兩位有效數字);若該校共有教職員工2500人,請預測該校愿意將學校整體搬遷至雄安新區的人數;
(2)若該校的8位院長中有5位院長愿意將學校整體搬遷至雄安新區,現該校擬在這8位院長中隨機選取4位院長組成考察團赴雄安新區進行實地考察,記為考察團中愿意將學校整體搬遷至雄安新區的院長人數,求
的分布列及數學期望.
參考公式及數據: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產品層出不窮.某公司隨機抽取人對共享產品對共享產品是否對日常生活有益進行了問卷調查,并對參與調查的
人中的性別以及意見進行了分類,得到的數據如下表所示:
(Ⅰ)根據表中的數據,能否在犯錯的概率不超過的前提下,認為對共享產品的態度與性別有關系?
(Ⅱ)為了答謝參與問卷調查的人員,該公司對參與本次問卷調查的人員隨機發放張超市的購物券,購物券金額以及發放的概率如下:
現有甲、乙兩人領取了購物券,記兩人領取的購物券的總金額為,求
的分布列和數學期望.
參考公式: .
臨界值表:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為
,其中
為參數,且
在直角坐標系
中,以坐標原點
為極點,以
軸正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)設是曲線
上的一點,直線
被曲線
截得的弦長為
,求
點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,拋物線
上在第一象限內的點
到焦點的距離為
,曲線
在點
處的切線交
軸于點
,直線
經過點
且垂直于
軸.
(Ⅰ)求點的坐標;
(Ⅱ)設不經過點和
的動直線
交曲線
于點
和
,交
于點
,若直線
,
,
的斜率依次成等差數列,試問:
是否過定點?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com