【題目】已知函數,
.
(1)若曲線與
在公共點
處有相同的切線,求實數
的值;
(2)當時,若曲線
與
在公共點
處有相同的切線,求證:點
唯一;
(3)若,
,且曲線
與
總存在公切線,求:正實數
的最小值.
【答案】(1);(2)證明見解析;(3)1.
【解析】試題分析:(1)曲線
與
在公共點
處有相同的切線,
,解出即可;(2)設
,由題設得
,轉化為關于
的方程只有一解,進而構造函數轉化為函數只有一個零點,利用導數即可證明;(3)設曲線
在點
處的切線方程為
,則只需使該切線與
相切即可,也即方程組
,只有一解即可,所以消去
后
,問題轉化關于
方程總有解,分情況借助導數進行討論即可求得
值.
試題解析:(1),
.∵曲線
與
在公共點
處有相同的切線∴
, 解得,
.
(2)設,則由題設有
… ①又在點
有共同的切線
∴代入①得
設,則
,
∴在
上單調遞增,所以
=0最多只有
個實根,
從而,結合(Ⅰ)可知,滿足題設的點只能是
(3)當,
時,
,
,
曲線在點
處的切線方程為
,即
.
由,得
.
∵ 曲線與
總存在公切線,∴ 關于
的方程
,
即
總有解.
若,則
,而
,顯然
不成立,所以
.
從而,方程可化為
.
令,則
.
∴ 當時,
;當
時,
,即
在
上單調遞減,在
上單調遞增.∴
在
的最小值為
,
所以,要使方程有解,只須
,即
.
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: (a>b>0)的離心率為
,且過點(1,
).
(1)求C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)對任意的x∈(﹣ ,
)滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數f(x)的導函數),則下列不等式成立的是( )
A. f(﹣
)<f(﹣
)
B. f(
)<f(
)??
C.f(0)>2f( )
D.f(0)> f(
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C中心在原點,焦點在坐標軸上,且該橢圓經過點( ,
)和點
.求
(1)橢圓C的方程;
(2)P,Q,M,N四點在橢圓C上,F1為負半軸上的焦點,直線PQ,MN都過F1且 ,求四邊形PMQN的面積最小值和最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在x軸,且拋物線上點P(2,m)到焦點的距離為3,斜率為2的直線L與拋物線相交于A,B兩點且|AB|=3 ,求拋物線和直線L的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左、右焦點為F1、F2 , 離心率為e.直線l:y=ex+a與x軸、y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設
=λ
.
(1)證明:λ=1﹣e2;
(2)若λ= ,△MF1F2的周長為6;寫出橢圓C的方程;
(3)確定λ的值,使得△PF1F2是等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】綜合題。
(1)現有5名男生和3名女生.若從中選5人,且要求女生只有2名,站成一排,共有多少種不同的排法?
(2)從{﹣3,﹣2,﹣1,0,1,2,3,4}中任選三個不同元素作為二次函數y=ax2+bx+c的系數,問能組成多少條經過原點且頂點在第一象限或第三象限的拋物線?
(3)已知( +2x)n , 若展開式中第5項、第6項與第7項的二項式系數成等差數列,求展開式中二項式系數最大項的系數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com