日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知曲線C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(Ⅱ)設m=2,過點D(0,4)的直線l與曲線C交于M,N兩點,O為坐標原點,若∠OMN為直角,求直線l的斜率.
(Ⅰ)若曲線C:
x2
m+2
+
y2
3-m
=1
是焦點在x軸上的橢圓,
則有m+2>3-m>0,
解得
1
2
<m<3

∴m的取值范圍是(
1
2
,3
).(3分)
(Ⅱ)m=2時,曲線C的方程為
x2
4
+y2=1
,C為橢圓,
由題意知,點D(0,4)的直線l的斜率存在,
∴設l的方程為y=kx+4,
x2
4
+y2=1,
y=kx+4

消去y得(1+4k2)x2+32kx+60=0.(5分)
△=(32k)2-240(1+4k2)=64k2-240,
當△>0時,解得k2
15
4

設M,N兩點的坐標分別為(x1,y1),(x2,y2),
因為∠OMN為直角,所以kOM•k=-1,即
y1
x1
y1-4
x1
=-1

整理得
x21
=4y1-
y21
.①(7分)
x21
4
+
y21
=1
,②,
將①代入②,消去x13
y21
+4y1-4=0

解得y1=
2
3
或y1=-2(舍去),
y1=
2
3
代入①,得x1
2
3
5

k=
y1-4
x1
5

故所求k的值為±
5
.(9分)
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖所示,F1,F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩個焦點,A,B為兩個頂點,已知橢圓C上的點到F1,F2兩點的距離之和為4且b=
3

(1)求橢圓C的方程和焦點坐標;
(2)過橢圓C的焦點F2作AB的平行線交橢圓于P,Q兩點,求△F1PQ的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設直線l與雙曲線C的公共點為M,且
AM
AB
,證明:λ+e2=1;
(3)設P是點F1關于直線l的對稱點,當△PF1F2為等腰三角形時,求e的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
4
+
y2
3
=1
,過橢圓的右焦點F的直線l與橢圓交于點A、B,定直線x=4交x軸于點K,直線KA和直線KB的斜率分別是k1、k2
(1)若直線l的傾斜角是45°,求線段AB的長;
(2)求證:k1+k2=0.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在平面直角坐標系中,已知A1(-3,0)A2(3,0)P(x,y)M(
x2-9
,0),若向量
A1P
λ
OM
A2P
滿足(
OM
)2=3
A1P
A2P

(1)求P點的軌跡方程,并判斷P點的軌跡是怎樣的曲線;
(2)過點A1且斜率為1的直線與(1)中的曲線相交的另一點為B,能否在直線x=-9上找一點C,使△A1BC為正三角形.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

矩形ABCD的中心在坐標原點,邊AB與x軸平行,AB=8,BC=6.E,F,G,H分別是矩形四條邊的中點,R,S,T是線段OF的四等分點,R′,S′,T′是線段CF的四等分點.設直線ER與GR′,ES與GS′,ET與GT′的交點依次為L,M,N.
(1)求以HF為長軸,以EG為短軸的橢圓Q的方程;
(2)根據條件可判定點L,M,N都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設線段OF的n(n∈N+,n≥2)等分點從左向右依次為Ri(i=1,2,…,n-1),線段CF的n等分點從上向下依次為Ti(i=1,2,…,n-1),那么直線ERi(i=1,2,…,n-1)與哪條直線的交點一定在橢圓Q上?(寫出結果即可,此問不要求證明)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,|AB|=
4
2
3
,|CD|=2-
4
2
3
,AC⊥BD.M為CD的中點.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)過M作AB的垂線,垂足為N,若存在正常數λ0,使
MP
0
PN
,且P點到A、B的距離和為定值,求點P的軌跡E的方程;
(Ⅲ)過(0,
1
2
)的直線與軌跡E交于P、Q兩點,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線C的中心在原點,拋物線y2=2
5
x
的焦點是雙曲線C的一個焦點,且雙曲線經過點(1,
3
)
,又知直線l:y=kx+1與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若
OA
OB
,求實數k值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知直角坐標平面內點A(x,y)到點F1(-1,0)與點F2(1,0)的距離之和為4.
(1)試求點A的軌跡M的方程;
(2)若斜率為
1
2
的直線l與軌跡M交于C、D兩點,點P(1,
3
2
)
為軌跡M上一點,記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請證明你的結論.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 在线有码 | 亚洲视频中文字幕 | 国产片三级91 | 日日夜夜爽 | 81精品国产乱码久久久久久 | 亚洲精品一区中文字幕乱码 | 精品乱码一区二区 | 天天艹天天干天天 | 国产精品视频1区 | 网站黄免费 | 狠狠做深爱婷婷综合一区 | 亚洲日本国产 | 成人欧美 | 国产精品视频一二三区 | 国产视频一区二区三区四区 | 日韩在线h| 精品无码久久久久久国产 | 欧美精品在线一区二区三区 | 欧美精产国品一二三区 | 免费成人av在线 | 欧美一区三区 | 午夜影院在线观看免费 | 久久亚洲一区二区三区四区 | 欧美日韩网站在线观看 | 日韩av不卡在线播放 | 国产三级在线观看 | 亚洲国产高清视频 | 五月天电影网 | 九九精品视频在线观看 | 综合久久综合久久 | 国产视频一区二区三区四区 | 一二三区字幕免费观看av | 日韩欧美在线一区二区 | 视频二区 | 99爱视频 | 精品成人 | 欧美亚洲三级 | www.成人国产 | 国产精品日韩精品 | 国产一区二区精品 | 国产欧美精品一区二区三区四区 |