【題目】設數列a1,a2,…,an,…中的每一項都不為0.求證:{an}為等差數列的充要條件是:對任何n∈N+,都有
科目:高中數學 來源: 題型:
【題目】對于定義域相同的函數和
,若存在實數
,
使
,則稱函數
是由“基函數
,
”生成的.
(1)若函數是“基函數
,
”生成的,求實數
的值;
(2)試利用“基函數,
”生成一個函數
,且同時滿足:①
是偶函數;②
在區間
上的最小值為
.求函數
的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量a=(cos2ωx-sin2ωx,sinωx),b=(,2cosωx),設函數f(x)=a·b(x∈R)的圖象關于直線x=
對稱,其中ω為常數,且ω∈(0,1).
(1)求函數f(x)的最小正周期和單調遞增區間;
(2)若將y=f(x)圖象上各點的橫坐標變為原來的,再將所得圖象向右平移
個單位,縱坐標不變,得到y=h(x)的圖象,若關于x的方程h(x)+k=0在
上有且只有一個實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為
,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函數y=f(x)存在與直線2x﹣y=0垂直的切線,求實數a的取值范圍;
(Ⅱ)設g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證:
>a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,若F(x)=f[f(x)+1]+m有兩個零點x1 , x2 , 則x1x2的取值范圍是( )
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞, )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為 ,求三棱錐C1﹣A1CD的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com