(本題滿分15分)
已知中心在原點O,焦點在x軸上,離心率為的橢圓過點(
,
).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)不過原點O的直線l與該橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.
(Ⅰ)
解:由題意可設(shè)橢圓方程為 (a>b>0),
則 故
所以,橢圓方程為 . ……………………………4分
(Ⅱ) 解:由題意可知,直線l的斜率存在且不為0,
故可設(shè)直線l的方程為 y=kx+m (m≠0),P(x1,y1),Q(x2,y2),
由 消去y得
(1+4k2)x2+8kmx+4(m2-1)=0,
則Δ=64 k2b2-16(1+4k2b2)(b2-1)=16(4k2-m2+1)>0,
且,
. ……………………7分
故 y1 y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.
因為直線OP,PQ,OQ的斜率依次成等比數(shù)列,
所以 =
=k2,……………………9分
即 +m2=0,又m≠0,
所以 k2=,即
k=
. …………………11分
由于直線OP,OQ的斜率存在,且Δ>0,得
0<m2<2 且 m2≠1.…………………12分
設(shè)d為點O到直線l的距離,
則 S△OPQ=d | PQ |=
| x1-x2 | | m |=
,…………………13分
所以 S△OPQ的取值范圍為 (0,1). ……………………………15分
【解析】略
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省如皋市五校高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
((本題滿分15分)
某有獎銷售將商品的售價提高120元后允許顧客有3次抽獎的機會,每次抽獎的方法是在已經(jīng)設(shè)置并打開了程序的電腦上按“Enter”鍵,電腦將隨機產(chǎn)生一個 1~6的整數(shù)數(shù)作為號碼,若該號碼是3的倍數(shù)則顧客獲獎,每次中獎的獎金為100元,運用所學(xué)的知識說明這樣的活動對商家是否有利。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在
上單調(diào)遞增,在
上單調(diào)遞減,求實數(shù)
的最大值;
(Ⅱ)若對任意的
,
都成立,求實數(shù)
的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期初摸底文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知直線與曲線
相切
1)求b的值;
2)若方程在
上恰有兩個不等的實數(shù)根
,求
①m的取值范圍;
②比較的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省溫州市十校聯(lián)合體高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
(本題滿分15分)已知拋物線:
(
),焦點為
,直線
交拋物線
于
、
兩點,
是線段
的中點,
過作
軸的垂線交拋物線
于點
,
(1)若拋物線上有一點
到焦點
的距離為
,求此時
的值;
(2)是否存在實數(shù),使
是以
為直角頂點的直角三角形?若存在,求出
的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分15分)
已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)設(shè),若
在
上不單調(diào)且僅在
處取得最大值,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com