【題目】如圖所示,已知是正三角形,若
平面
,平面
平面
,且
.
(1)求證:平面
;
(2)若平面
,求二面角
的余弦值.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,
,
,
,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】惰性氣體分子為單原子分子,在自由原子情形下,其電子電荷分布是球對稱的.負電荷中心與原子核重合,但如兩個原子接近,則彼此能因靜電作用產生極化(正負電荷中心不重合),從而導致有相互作用力,這稱為范德瓦爾斯相互作用.今有兩個相同的惰性氣體原子,它們的原子核固定,原子核正電荷的電荷量為,這兩個相距為
的惰性氣體原子組成體系的能量中有靜電相互作用能
,其中
為靜電常量,
,
分別表示兩個原子負電中心相對各自原子核的位移,且
和
都遠小于
,當
遠小于1時,
,則
的近似值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某醫藥開發公司實驗室有瓶溶液,其中
瓶中有細菌
,現需要把含有細菌
的溶液檢驗出來,有如下兩種方案:
方案一:逐瓶檢驗,則需檢驗次;
方案二:混合檢驗,將瓶溶液分別取樣,混合在一起檢驗,若檢驗結果不含有細菌
,則
瓶溶液全部不含有細菌
;若檢驗結果含有細菌
,就要對這
瓶溶液再逐瓶檢驗,此時檢驗次數總共為
.
(1)假設,采用方案一,求恰好檢驗3次就能確定哪兩瓶溶液含有細菌
的概率;
(2)現對瓶溶液進行檢驗,已知每瓶溶液含有細菌
的概率均為
.
若采用方案一.需檢驗的總次數為,若采用方案二.需檢驗的總次數為
.
(i)若與
的期望相等.試求
關于
的函數解析式
;
(ii)若,且采用方案二總次數的期望小于采用方案一總次數的期望.求
的最大值.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F1為橢圓的左焦點,
在橢圓上,PF1⊥x軸.
(1)求橢圓的方程:
(2)已知直線l與橢圓交于A,B兩點,且坐標原點O到直線l的距離為的大小是否為定值?若是,求出該定值:若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為2的等邊△ABC中,D,E分別為邊AC,AB的中點.將△ADE沿DE折起,使得AB⊥AD,得到如圖2的四棱錐A﹣BCDE,連結BD,CE,且BD與CE交于點H.
(1)證明:;
(2)設點B到平面AED的距離為h1,點E到平面ABD的距離為h2,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統一高考科目成績和自主選擇的3門普通高中學業水平等級考試科目成績組成,總分為750分.其中,統一高考科目為語文、數學、外語,自主選擇的3門普通高中學業水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為、
、
、
、
、
、
、
共8個等級。參照正態分布原則,確定各等級人數所占比例分別為
、
、
、
、
、
、
、
.等級考試科目成績計入考生總成績時,將
至
等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區間,得到考生的等級成績.
舉例說明.
某同學化學學科原始分為65分,該學科等級的原始分分布區間為58~69,則該同學化學學科的原始成績屬
等級.而
等級的轉換分區間為61~70,那么該同學化學學科的轉換分為:
設該同學化學科的轉換等級分為,
,求得
.
四舍五入后該同學化學學科賦分成績為67.
(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布.
(i)若小明同學在這次考試中物理原始分為84分,等級為,其所在原始分分布區間為82~93,求小明轉換后的物理成績;
(ii)求物理原始分在區間的人數;
(2)按高考改革方案,若從全省考生中隨機抽取4人,記表示這4人中等級成績在區間
的人數,求
的分布列和數學期望.
(附:若隨機變量,則
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若實數滿足
,則稱
為函數
的不動點.
(1)求函數的不動點;
(2)設函數,其中
為實數.
① 若時,存在一個實數
,使得
既是
的不動點,又是
的不動點(
是函數
的導函數),求實數
的取值范圍;
② 令,若存在實數
,使
,
,
,
成各項都為正數的等比數列,求證:函數
存在不動點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com