【題目】已知橢圓的離心率為
,以橢圓E的長軸和短軸為對角線的四邊形的面積為
.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點,設P為橢圓E上一動點,且滿足
(O為坐標原點).當
時,求
的最小值.
科目:高中數學 來源: 題型:
【題目】圓錐(其中
為頂點,
為底面圓心)的側面積與底面積的比是
,則圓錐
與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),直線
與直線
平行,且過坐標原點,圓
的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系.
(1)求直線和圓
的極坐標方程;
(2)設直線和圓
相交于點
、
兩點,求
的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某國有53座城市,任意兩座城市之間要么有一條雙向公路直達,要么沒有直接相連的公路。已知這53座城市之間共有312條公路,并且由任何一座城市出發通過公路均能到達其余各城市。每一座城市至多向其余12座城市引出公路,且每走一條公路需要繳納10元路費。現甲在城市A,且身上僅有120元。甲是否一定能到達任意一座城市?證明你的結論。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】春節期間某商店出售某種海鮮禮盒,假設每天該禮盒的需求量在范圍內等可能取值,該禮盒的進貨量也在
范圍內取值(每天進1次貨).商店每銷售1盒禮盒可獲利50元;若供大于求,剩余的削價處理,每處理1盒禮盒虧損10元;若供不應求,可從其它商店調撥,銷售1盒禮盒可獲利30元.設該禮盒每天的需求量為
盒,進貨量為
盒,商店的日利潤為
元.
(1)求商店的日利潤關于需求量
的函數表達式;
(2)試計算進貨量為多少時,商店日利潤的期望值最大?并求出日利潤期望值的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應了十二種動物中的一種,即自己的屬相.現有印著十二生肖圖案的毛絨娃娃各一個,小張同學的屬相為馬,小李同學的屬相為羊,現在這兩位同學從這十二個毛絨娃娃中各隨機取一個(不放回),則這兩位同學都拿到自己屬相的毛絨娃娃的概率是( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com