【題目】設(shè)是等差數(shù)列
的前
項和,已知
,
,
.
(1)求;
(2)若數(shù)列,求數(shù)列
的前
項和
.
【答案】(1)18;(2)
【解析】試題分析:(1)根據(jù)等差數(shù)列滿足
,
,列出關(guān)于首項
、公差
的方程組,解方程組可得
與
的值,根據(jù)等差數(shù)列的求和公式可得
遞的值;(2)由(1)知
,從而可得
,利用裂項相消法求解即可.
試題解析:(I)設(shè)數(shù)列的公差為
,則
即 ,
解得,
所以.
(也可利用等差數(shù)列的性質(zhì)解答)
(II)由(I)知,
,
【方法點晴】本題主要考查等差數(shù)列的通項與求和公式,以及裂項相消法求數(shù)列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1) ;(2)
; (3)
;(4)
;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的半徑為2,圓心在軸的正半軸上,直線
與圓C相切.
(1)求圓C的方程;
(2)過點的直線
與圓C交于不同的兩點
,且當(dāng)
時,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線上,且與直線
相切于點
(1)求圓C的方程;
(2)是否存在過點的直線
與圓C交于
兩點,且
的面積為
(O為坐標(biāo)原點),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin2( +x)+
(sin2x﹣cos2x),x∈[
,
].
(1)求 的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若不等式|f(x)﹣m|<2恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前
項和為
,已知
.
(1)試寫出;
(2)設(shè),求證:數(shù)列
是等比數(shù)列;
(3)求出數(shù)列的前
項和為
及數(shù)列
的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時,x﹣3y的最大值為( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱 中,側(cè)面
和側(cè)面
都是矩形,
是邊長為
的正三角形,
分別為
的中點.
(1)求證: 平面
;
(2)求證:平面平面
.
(3)若平面
,求棱
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示. 是等腰梯形,
米,
(
在
的延長線上,
為銳角). 圓
與
都相切,且其半徑長為
米.
是垂直于
的一個立柱,則當(dāng)
的值設(shè)計為多少時,立柱
最矮?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com