【題目】如圖給出的是2000年至2016年我國實際利用外資情況,以下結論正確的是( )
A. 2000年以來我國實際利用外資規模與年份呈負相關
B. 2010年以來我國實際利用外資規模逐年增大
C. 2008年以來我國實際利用外資同比增速最大
D. 2010年以來我國實際利用外資同比增速最大
科目:高中數學 來源: 題型:
【題目】“中國大能手”是央視推出的一檔大型職業技能挑戰賽類節目,旨在通過該節目,在全社會傳播和弘揚“勞動光榮、技能寶貴、創造偉大”的時代風尚.某公司準備派出選手代表公司參加“中國大能手”職業技能挑戰賽.經過層層選拔,最后集中在甲、乙兩位選手在一項關鍵技能的區分上,選手完成該項挑戰的時間越少越好.已知這兩位選手在15次挑戰訓練中,完成該項關鍵技能挑戰所用的時間(單位:秒)及挑戰失敗(用“×”表示)的情況如下表1:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
甲 | × | 96 | 93 | × | 92 | × | 90 | 86 | × | × | 83 | 80 | 78 | 77 | 75 |
乙 | × | 95 | × | 93 | × | 92 | × | 88 | 83 | × | 82 | 80 | 80 | 74 | 73 |
據表1中甲、乙兩選手完成該項關鍵技能挑戰成功所用時間的數據,應用統計軟件得下表2:
數字特征 | 均值(單位:秒)方差 | 方差 |
甲 | 85 | 50.2 |
乙 | 84 | 54 |
(1)在表1中,從選手甲完成挑戰用時低于90秒的成績中,任取2個,求這2個成績都低于80秒的概率;
(2)若該公司只有一個參賽名額,以該關鍵技能挑戰成績為標準,根據以上信息,判斷哪位選手代表公司參加職業技能挑戰賽更合適?請說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在矩形中,
,
,
分別是
邊上的三等分點,將
分別沿
、
折起到
、
的位置,且使平面
底面
,平面
底面
,連結
.
(1)證明:平面
;
(2)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是
上的偶函數,對于任意
,都有
成立,當
時,有
給出下列命題:
①;
②函數的周期是6;
③函數在
上為增函數;
④函數在
上有四個零點.
其中所有正確命題的序號為_______________.(把所有正確命題的序號都填上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為奇函數,
為偶函數,且
.
(1)求及
的解析式及定義域;
(2)若關于的不等式
恒成立,求實數
的取值范圍.
(3)如果函數,若函數
有兩個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小李從網上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯系小李.若小李能在10分鐘之內到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數,在某一周期內的圖象時,列表并填入了部分數據,如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)請將上表數據補充完整,并求函數的解析式;
(2)求函數的單調遞增區間;
(3)求函數在區間
上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的偶函數f(x),其導函數,當x≥0時,恒有
+f(﹣x)<0,若g(x)=x2f(x),則不等式g(x)<g(1﹣2x)的解集為( )
A.(,1)B.(﹣∞,
)∪(1,+∞)
C.(,+∞)D.(﹣∞,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代十進制的算籌計數法,在數學史上是一個偉大的創造,算籌實際上是一根根同長短的小木棍.如圖,是利用算籌表示數的一種方法.例如:3可表示為“
”,26可表示為“
”.現有6根算籌,據此表示方法,若算籌不能剩余,則可以用
這9數字表示兩位數的個數為
A.13B.14C.15D.16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com