如圖,在直三棱柱中,
,
,
,點
是
的中點.
(1)求異面直線與
所成角的余弦值;
(2)求平面與平面
所成二面角的正弦值.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在長方體ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱AB,BC上的點,且EB=FB=1.
(1)求異面直線EC1與FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點G,使DG⊥平面D1EF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點M在線段EC上且不與E、C垂合.
(1)當點M是EC中點時,求證:BM//平面ADEF;
(2)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M—BDE的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,正方形與矩形
所在平面互相垂直,
,點
為
的中點.
(1)求證:∥平面
;
(2)求證:;
(3)在線段上是否存在點
,使二面角
的大小為
?若存在,求出
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖(1),等腰直角三角形的底邊
,點
在線段
上,
于
,現(xiàn)將
沿
折起到
的位置(如圖(2)).
(Ⅰ)求證:;
(Ⅱ)若,直線
與平面
所成的角為
,求
長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,正方體ABCD—A1B1C1D1中,P、M、N分別為棱DD1、AB、BC的中點 .
(1)求二面角B1MNB的正切值;
(2)求證:PB⊥平面MNB1;
(3)若正方體的棱長為1,畫出一個正方體表面展開圖,使其滿足“有4個正方形面相連成一個長方形”的條件,并求出展開圖中P、B兩點間的距離 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
點P是曲線x2-y-2ln=0上任意一點,則點P到直線4x+4y+1=0的最短距離是( )
A.![]() | B.![]() | C.![]() ![]() | D.![]() |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com