【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).當
時,若函數(shù)
在
上為增函數(shù),求實數(shù)
的取值范圍.
【答案】(1) 在
上單調(diào)遞減,在
,
上單調(diào)遞增.
(2) .
【解析】
(1)求導(dǎo),根據(jù)正負討論導(dǎo)函數(shù)符號,確定對應(yīng)單調(diào)區(qū)間,(2)先利用導(dǎo)數(shù)研究
正負,根據(jù)正負去絕對值將
化為分段函數(shù),再利用導(dǎo)數(shù)分段研究
單調(diào)性,利用變量分離法轉(zhuǎn)化為求對應(yīng)函數(shù)最值問題,最后根據(jù)最值確定實數(shù)
的取值范圍.
(1)對求導(dǎo)得
(i)若,當
時,
,當
或
時,
所以在
上單調(diào)遞增,在
,
上單調(diào)遞減
(ii)若,當
時,
,當
或
時,
所以在
上單調(diào)遞減,在
,
上單調(diào)遞增.
(2)記函數(shù),
考察函數(shù)的符號
對函數(shù)求導(dǎo)得
當時,
恒成立
當時,
從而
∴在
上恒成立,故
在
上單調(diào)遞減.
∴
∴
又曲線在
上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調(diào)性知
存在唯一的,使
,
所以當時,
,當
時,
∴,∴
由上述討論過程可知曲線在
上連續(xù)不斷,又函數(shù)
為增函數(shù)
所以在
上恒成立
①當時,
在
上恒成立,即
在
上恒成立,
記
,
,則
,
當變化時,
,
變化情況如下表:
∴
故“在
上恒成立”只需
,即
②當時,
,
當時,
在
上恒成立
綜合①②,知當時,函數(shù)
在
為增函數(shù)
故實數(shù)的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用隨機數(shù)表對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)若直線與圓
交于
兩點,
是圓
上不同于
兩點的動點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各進行次射擊,甲每次擊中目標的概率為
,乙每次擊中目標的概率
,
(Ⅰ)記甲擊中目標的次數(shù)為,求
的概率分布及數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多擊中目標次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的長軸長為
,且經(jīng)過點
.
(1)求橢圓的標準方程;
(2)過橢圓右焦點作兩條互相垂直的弦
與
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市為調(diào)查會員某年度上半年的消費情況制作了有獎?wù){(diào)查問卷發(fā)放給所有會員,并從參與調(diào)查的會員中隨機抽取名了解情況并給予物質(zhì)獎勵.調(diào)查發(fā)現(xiàn)抽取的
名會員消費金額(單位:萬元)都在區(qū)間
內(nèi),調(diào)查結(jié)果按消費金額分成
組,制作成如下的頻率分布直方圖.
(1)求該名會員上半年消費金額的平均值與中位數(shù);(以各區(qū)間的中點值代表該區(qū)間的均值)
(2)若再從這名會員中選出一名會員參加幸運大抽獎,幸運大抽獎方案如下:會員最多有兩次抽獎機會,每次抽獎的中獎概率均為
,第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋擲一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎.規(guī)定:拋出的硬幣,若反面朝上,則會員獲得
元獎金,不進行第二次抽獎;若正面朝上,會員需進行第二次抽獎,且在第二次抽獎中,如果中獎,則獲得獎金
元,如果未中獎,則所獲得的獎金為
元.若參加幸運大抽獎的會員所獲獎金(單位:元)用
表示,求
的分布列與期望值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺在互聯(lián)網(wǎng)上征集電視節(jié)目的現(xiàn)場參與觀眾,報名的共有12000人,分別來自4個地區(qū),其中甲地區(qū)2400人,乙地區(qū)4605人,丙地區(qū)3795人,丁地區(qū)1200人,主辦方計劃從中抽取60人參加現(xiàn)場節(jié)目,請設(shè)計一套抽樣方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
上是增函數(shù),則
的取值范圍是( )
A. B.
C.
D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當x∈[2,+∞)時,
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點睛】
本題考查的知識點是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】圓錐的高和底面半徑
之比
,且圓錐的體積
,則圓錐的表面積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,
,
.
(1)求證:存在的一次函數(shù)
,使得
成公比為2的等比數(shù)列;
(2)求的通項公式;
(3)令,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com