【題目】為踐行“綠水青山就是金山銀山”的發展理念,某城區對轄區內,
,
三類行業共200個單位的生態環境治理成效進行了考核評估,考評分數達到80分及其以上的單位被稱為“星級”環保單位,未達到80分的單位被稱為“非星級”環保單位.現通過分層抽樣的方法獲得了這三類行業的20個單位,其考評分數如下:
類行業:85,82,77,78,83,87;
類行業:76,67,80,85,79,81;
類行業:87,89,76,86,75,84,90,82.
(Ⅰ)計算該城區這三類行業中每類行業的單位個數;
(Ⅱ)若從抽取的類行業這6個單位中,再隨機選取3個單位進行某項調查,求選出的這3個單位中既有“星級”環保單位,又有“非星級”環保單位的概率.
【答案】(Ⅰ),
,
三類行業中每類行業的單位個數分別為60,60,80.(Ⅱ)
【解析】
第一問利用分層抽樣的概念直接計算即可;第二問是古典概率模型,先列出所有的基本事件,然后再找出3個單位都是“星級”環保單位或都是“非星級”環保單位所包含基本事件的個數,即可求出3個單位中既有“星級”環保單位,又有“非星級”環保單位的概率。
(I)由題意,得抽取的,
,
三類行業單位個數之比為
.
由分層抽樣的定義,有
類行業的單位個數為
,
類行業的單位個數為
,
類行業的單位個數為
,
故該城區,
,
三類行業中每類行業的單位個數分別為60,60,80.
(Ⅱ)記選出的這3個單位中既有“星級”環保單位,又有“非星級”環保單位為事件.
這3個單位的考核數據情形有,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共20種.
這3個單位都是“星級”環保單位的考核數據情形有,
,
,
,共4種,沒有都是“非星級”環保單位的情形,
故這3個單位都是“星級”環保單位或都是“非星級”環保單位的情形共4種,
故所求概率.
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知曲線的方程為
,曲線
的方程為
.以極點
為原點,極軸為
軸正半軸建立直角坐標系
.
(1)求曲線,
的直角坐標方程;
(2)若曲線與
軸相交于點
,與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
的在數集
上都有定義,對于任意的
,當
時,
或
成立,則稱
是數集
上
的限制函數.
(1)求在
上的限制函數
的解析式;
(2)證明:如果在區間
上恒為正值,則
在
上是增函數;[注:如果
在區間
上恒為負值,則
在區間
上是減函數,此結論無需證明,可以直接應用]
(3)利用(2)的結論,求函數在
上的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考3+3最大的特點就是取消文理科,除語文、數學、外語之外,從物理、化學、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全理(選擇物理、化學、生物)的選擇是否與性別有關,覺得從某學校高一年級的650名學生中隨機抽取男生,女生各25人進行模擬選科.經統計,選擇全理的人數比不選全理的人數多10人.
(1)請完成下面的2×2列聯表;
選擇全理 | 不選擇全理 | 合計 | |
男生 | 5 | ||
女生 | |||
合計 |
(2)估計有多大把握認為選擇全理與性別有關,并說明理由;
(3)現從這50名學生中已經選取了男生3名,女生2名進行座談,從中抽取2名代表作問卷調查,求至少抽到一名女生的概率.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對年利率為的連續復利,要在
年后達到本利和
,則現在投資值為
,
是自然對數的底數.如果項目
的投資年利率為
的連續復利.
(1)現在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)
(2)一個家庭為剛出生的孩子設立創業基金,若每年初一次性給項目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解高三年級不同性別的學生對取消藝術課的態度(支持或反對),進行了如下的調查研究,全年級共有1350人,男女生比例為,現按分層抽樣方法抽取若干名學生,每人被抽到的概率均為
,通過對被抽取學生的問卷調查,得到如下
列聯表:
支持 | 反對 | 總計 | |
男生 | 30 | ||
女生 | 25 | ||
總計 |
(1)完成列聯表,并判斷能否有的把握認為態度與性別有關?
(2)若某班有6名男生被抽到,其中2人支持,4人反對;有4名女生被抽到,其中2人支持,2人反對,現從這10人中隨機抽取一男一女進一步調查原因.求其中恰有一人支持一人反對的概率.
參考公式及臨界值表:
0.10 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com