【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現擬在兩條木棧道的A,B處設置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
科目:高中數學 來源: 題型:
【題目】三角形的面積為,其中
,
,
為三角形的邊長,
為三角形內切圓的半徑,則利用類比推理,可得出四面體的體積為( )
A.
B.
C. ,(
為四面體的高)
D. ,(
,
,
,
分別為四面體的四個面的面積,
為四面體內切球的半徑)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在15~65歲的人群中隨機抽取n人進行問卷調查,把這n人按年齡分成5組:第一組[15,25),第二組[25,35),第三組[35,45),第四組[45,55),第五組[55,65],得到的樣本的頻率分布直方圖如右:
調查問題是“雙峰山國家森林公園是幾A級旅游景點?”每組中回答正確的人數及回答正確的人數占本組的頻率的統計結果如下表.
組號 | 分組 | 回答正確的人數 | 回答正確的人數占本組的頻率 |
第1組 | [15,25) | 5 | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | y | 0.9 |
第4組 | [45,55) | 9 | a |
第5組 | [55,65] | 7 | b |
(1)分別求出n,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,給出下列結論:
①的單調遞減區間;
②當時,直線y=k與y=f (x)的圖象有兩個不同交點;
③函數y=f(x)的圖象與的圖象沒有公共點;
④當時,函數
的最小值為2.
其中正確結論的序號是_________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(Ⅰ)若曲線與曲線
在它們的某個交點處具有公共切線,求
的值;
(Ⅱ)若存在實數使不等式
的解集為
,求實數
的取值范圍
(Ⅲ)若方程有三個不同的解
,且它們可以構成等差數列,寫出實數
的值(只需寫出結果).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節新品種大豆發芽數之間的關系進行研究,他們分別記錄了月
日至
月
日每天的晝夜溫差與實驗室每天
顆種子的發芽數,得到以下表格
該興趣小組確定的研究方案是:先從這組數據中選取
組數據,然后用剩下的
組數據求線性回歸方程,再用被選取的
組數據進行檢驗.
(1) 求統計數據中發芽數的平均數與方差;
(2) 若選取的是月
日與
月
日的兩組數據,請根據
月
日至
月
日的數據,求出發芽數
關于溫差
的線性回歸方程
,若由線性回歸方程得到的估計數據與所選取的檢驗數據的誤差不超過
,則認為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程
中斜率和截距最小二乘估法計算公式:
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com