【題目】如圖,在直三棱柱中,
,
,
,點(diǎn)
是
的中點(diǎn).
(1)證明:直線平面
;
(2)求異面直線與
所成角的余弦值;
(3)求平面與
所成二面角的正弦值.
【答案】(1)見(jiàn)解析;(2) ;(3)
【解析】
(1)連接,交
于
,連結(jié)
,得到
為
中點(diǎn),可證
,即可證明結(jié)論;
(2)以為坐標(biāo)原點(diǎn),建立如下圖所示的空間直角坐標(biāo)系,求出
坐標(biāo),再求出向量
夾角的余弦,即可求解;
(3)求出平面的法向量,取
軸上的單位向量為平面
法向量,根據(jù)向量的面面角公式,即可求解.
(1)連接,交
于
, 連結(jié)
,
直三棱柱中,
側(cè)面為平行四邊形,
為
中點(diǎn),
點(diǎn)是
的中點(diǎn),
又平面
,
平面
平面
(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
,
則,
所以,
.
因?yàn)?/span>.
所以異面直線與
所成角的余弦值為
.
(3)設(shè)平面的法向量
.
因?yàn)?/span>,
所以,
即且
,
取,得
,
所以是平面
的一個(gè)法向量,
取平面的一個(gè)法向量
,
設(shè)平面與平面
所成二面角的大小為
.
由,
得.
因此平面與平面
所成二面角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中,底面
是邊長(zhǎng)為
的正三角形,
,
,
是棱
的中點(diǎn),點(diǎn)
在棱
上,且
.
(1)求證:平面
;
(2)求直線和平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)時(shí),函數(shù)
有最大值.設(shè)
的最大值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( )
A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
是自然對(duì)數(shù)的底數(shù).
若
,求函數(shù)
的極值;
若關(guān)于
的不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 (
)的一個(gè)焦點(diǎn)
點(diǎn)
為橢圓
內(nèi)一點(diǎn),若橢圓
上存在一點(diǎn)
,使得
,則橢圓
的離心率的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)均相等的正四棱錐中,
為底面正方形的重心,
分別為側(cè)棱
的中點(diǎn),有下列結(jié)論:
①平面
;②平面
平面
;③
;
④直線與直線
所成角的大小為
.
其中正確結(jié)論的序號(hào)是__________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,則不等式f(x)·g(x)<0的解集是( )
A. (-3,0)∪(3,+∞)
B. (-3,0)∪ (0,3)
C. (-∞,-3)∪(3,+∞)
D. (-∞,-3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)
到準(zhǔn)線距離為
.
(1)若點(diǎn),且點(diǎn)
在拋物線
上,求
的最小值;
(2)若過(guò)點(diǎn)的直線
與圓
相切,且與拋物線
有兩個(gè)不同交點(diǎn)
,求
的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com