【題目】某社區超市購進了A,B,C,D四種新產品,為了解新產品的銷售情況,該超市隨機調查了15位顧客(記為ai , i=1,2,3,…,15)購買這四種新產品的情況,記錄如下(單位:件):
顧 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 |
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個月按30天計算,試估計產品A的月銷售量(單位:件);
(Ⅱ)為推廣新產品,超市向購買兩種以上(含兩種)新產品的顧客贈送2元電子紅包.現有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,求隨機變量X的分布列和數學期望;
(Ⅲ)若某顧客已選中產品B,為提高超市銷售業績,應該向其推薦哪種新產品?(結果不需要證明)
【答案】解:(I)由題意可得:5× ×30=3000(件).因此產品A的月銷售量約為3000(件). (II)一位顧客購買兩種以上(含兩種)新產品的概率=
=
.
現有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的個數為ξ,則ξ~B(3, ).P(ξ=k)=
.
隨機變量X=2ξ的分布列為:
X | 0 | 2 | 4 | 6 |
P | | | | |
EX= =
.
(III)某顧客已選中產品B,為提高超市銷售業績,應該向其推薦B種新產品.
【解析】(I)由題意可得:產品A的月銷售量約為5× ×30(件).(II)一位顧客購買兩種以上(含兩種)新產品的概率=
=
. 現有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的個數為ξ,則ξ~B(3,
).P(ξ=k)=
.隨機變量X=2ξ,即可得出.(III)由于顧客購買B種新產品的概率最大,因此推薦此種新產品.
科目:高中數學 來源: 題型:
【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數f(x)=xα的圖象經過點(2, ),則f(4)的值等于
;
④已知向量 =(3,﹣4),
=(2,1),則向量
在向量
方向上的投影是
.
說法錯誤的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說:“數學物理不分家,如果物理成績好,那么學習數學就沒什么問題.”某班針對“高中生物理學習對數學學習的影響”進行研究,得到了蘇俄生的物理成績與數學成績具有線性相關關系的結論.現從該班隨機抽取5名學生在一次考試中的數學和物理成績,如表:
成績 編號 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
數學(y) | 130 | 125 | 110 | 95 | 90 |
(1)求數學成績y對物理成績x的線性回歸方程 =
x+
(
精確到0.1).若某位學生的物理成績為80分,預測他的數學成績;
(2)要從抽取的這五位學生中隨機選出2位參加一項知識競賽,求選中的學生的數學成績至少有一位高于120分的概率.(參考公式: =
,
=
﹣
) (參考數據:902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由于研究性學習的需要,中學生李華持續收集了手機“微信運動”團隊中特定20名成員每天行走的步數,其中某一天的數據記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對這20個數據按組距1000進行分組,并統計整理,繪制了如下尚不完整的統計圖表:
步數分組統計表(設步數為x)
組別 | 步數分組 | 頻數 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫出m,n的值,并回答這20名“微信運動”團隊成員一天行走步數的中位數落在哪個組別;
(Ⅱ)記C組步數數據的平均數與方差分別為v1 , ,E組步數數據的平均數與方差分別為v2 ,
,試分別比較v1與v2 ,
與
的大小;(只需寫出結論)
(Ⅲ)從上述A,E兩個組別的數據中任取2個數據,記這2個數據步數差的絕對值為ξ,求ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=cos2x圖象上所有點向右平移 個單位長度后得到函數g(x)的圖象,若g(x)在區間[0,a]上單調遞增,則實數a的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=x2﹣bx+c滿足f(1+x)=f(1﹣x)且f(0)=3,則f(bx)和f(cx)的大小關系是( )
A.f(bx)≤f(cx)
B.f(bx)≥f(cx)
C.f(bx)>f(cx)
D.大小關系隨x的不同而不同
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:(x+1)2+y2=8,點A(1,0),P是圓C上任意一點,線段AP的垂直平分線交CP于點Q,當點P在圓上運動時,點Q的軌跡為曲線E.
(1)求曲線E的方程;
(2)若直線l:y=kx+m與曲線E相交于M,N兩點,O為坐標原點,求△MON面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com