(本小題滿分12分,(1)小問4分,(2)小問8分)已知為橢圓
上兩動(dòng)點(diǎn),
分別為其左右焦點(diǎn),直線
過點(diǎn)
,且不垂直于
軸,
的周長為
,且橢圓的短軸長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)為橢圓
的左端點(diǎn),連接
并延長交直線
于點(diǎn)
.求證:直線
過定點(diǎn).
(1);(2)證明詳見解析.
解析試題分析:(1)結(jié)合圖形及橢圓的定義先得到的周長為
,進(jìn)而根據(jù)條件列出方程組
,從中求解即可得出
的值,進(jìn)而可寫出橢圓的方程;(2)由(1)確定
,進(jìn)而設(shè)點(diǎn)
,設(shè)直線
,聯(lián)立直線與橢圓的方程,解出點(diǎn)
,設(shè)直線
,可得
,進(jìn)而根據(jù)
三點(diǎn)共線得出
,將點(diǎn)
的坐標(biāo)代入并化簡得到
,進(jìn)而求出
點(diǎn)的坐標(biāo),
,然后寫出直線
的方程并化簡得到
,從該直線方程不難得到該直線恒通過定點(diǎn)
,問題得證.
(1)依題意有:的周長為
所以,則橢圓
的方程為
4分
(2)由橢圓方程可知,點(diǎn)
設(shè)直線,由
得
,從而
,
,即點(diǎn)
同理設(shè)直線,可得
7分
由三點(diǎn)共線可得
,即
,代入
兩點(diǎn)坐標(biāo)化簡可得
9分
直線,可得點(diǎn)
,即
從而直線的方程為
化簡得,即
,
從而直線過定點(diǎn)
12分.
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì);2.直線與橢圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為,且過點(diǎn)(4,-
).
(1)求雙曲線方程;
(2)若點(diǎn)M(3,m)在雙曲線上,求證:·
=0;
(3)求△F1MF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓(
)的左、右焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段
為直徑的圓經(jīng)過點(diǎn)
,經(jīng)過原點(diǎn)
的直線
與該圓相切,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為
,離心率
.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線
:
上任一點(diǎn)(
點(diǎn)不同于
),直線
與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為
,上頂點(diǎn)為B,拋物線
分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,
與
相交于 直線
上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動(dòng)直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn)
,求
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A ,B兩點(diǎn).
(1)如圖所示,若,求直線l的方程;
(2)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長軸長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•陜西)設(shè)橢圓C:過點(diǎn)(0,4),離心率為
(Ⅰ)求C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為
,離心率
.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線
:
上任一點(diǎn)(
點(diǎn)不同于
),直線
與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2.
(1)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(2)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com