日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如果存在常數a使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)若有窮遞增數列{bn}是“兌換系數”為a的“兌換數列”,求證:數列{bn}的前n項和Sn=
n2
•a
;
(3)已知有窮等差數列{cn}的項數是n0(n0≥3),所有項之和是B,試判斷數列{cn}是否是“兌換數列”?如果是的,給予證明,并用n0和B表示它的“兌換系數”;如果不是,說明理由.
分析:(1)根據數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,可得a-m,a-4,a-2,a-1也是該數列的項,且a-m<a-4<a-2<a-1,由此可求m和a的值;
(2)不妨設有窮數列{bn}的項數為n,根據有窮數列{bn}是“兌換系數”為a的“兌換數列”,可得bi+bn+1-i=a(1≤i≤n),從而可得數列{bn}的前n項和;
(3)證明對數列{cn}中的任意一項ci(1≤i≤n0a-ci=c1+(n0-i)d=cn0+1-i∈{cn}即可.
解答:(1)解:因為數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”
所以a-m,a-4,a-2,a-1也是該數列的項,且a-m<a-4<a-2<a-1----------(1分)
故a-m=1,a-4=2-------------------(3分)
即a=6,m=5.-------------------(4分)
(2)證明:不妨設有窮數列{bn}的項數為n
因為有窮數列{bn}是“兌換系數”為a的“兌換數列”,所以a-bn,a-bn-1,…,a-b1也是該數列的項,-----(5分)
又因為數列{bn}是遞增數列b1<b2<…<bn,且a-bn<a-bn-1<…<a-b1-------------------(6分)
則bi+bn+1-i=a(1≤i≤n)-------------------(8分)
Sn=b1+b2+…+bn=
n
2
a
-------------------(10分)
(3)解:數列{cn}是“兌換數列”.證明如下:
設數列{cn}的公差為d,因為數列{cn}是項數為n0項的有窮等差數列
c1c2c3≤…≤cn0,則a-c1≥a-c2≥a-c3≥…≥a-cn0
即對數列{cn}中的任意一項ci(1≤i≤n0a-ci=c1+(n0-i)d=cn0+1-i∈{cn}-------(12分)
同理可得:若c1c2c3≥…≥cn0a-ci=c1+(n0-i)d=cn0+1-i∈{cn}也成立,
由“兌換數列”的定義可知,數列{cn}是“兌換數列”;-------------------(14分)
又因為數列{bn}所有項之和是B,所以B=
(c1+cn0)•n0
2
=
a•n0
2
,即a=
2B
n0
-------------------(18分)
點評:本題考查新定義,考查學生的閱讀能力,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果存在常數a使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)已知有窮等差數列bn的項數是n0(n0≥3),所有項之和是B,求證:數列bn是“兌換數列”,并用n0和B表示它的“兌換系數”;
(3)對于一個不少于3項,且各項皆為正整數的遞增數列{cn},是否有可能它既是等比數列,又是“兌換數列”?給出你的結論并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如果存在常數a使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)已知有窮等差數列bn的項數是n0(n0≥3),所有項之和是B,求證:數列bn是“兌換數列”,并用n0和B表示它的“兌換系數”;
(3)對于一個不少于3項,且各項皆為正整數的遞增數列{cn},是否有可能它既是等比數列,又是“兌換數列”?給出你的結論并說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省廈門市思明區科技中學高二(上)期中數學試卷(理科)(解析版) 題型:解答題

如果存在常數a使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)若有窮遞增數列{bn}是“兌換系數”為a的“兌換數列”,求證:數列{bn}的前n項和
(3)已知有窮等差數列{cn}的項數是n(n≥3),所有項之和是B,試判斷數列{cn}是否是“兌換數列”?如果是的,給予證明,并用n和B表示它的“兌換系數”;如果不是,說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省廈門市思明區科技中學高二(上)期中數學試卷(理科)(解析版) 題型:解答題

如果存在常數a使得數列{an}滿足:若x是數列{an}中的一項,則a-x也是數列{an}中的一項,稱數列{an}為“兌換數列”,常數a是它的“兌換系數”.
(1)若數列:1,2,4,m(m>4)是“兌換系數”為a的“兌換數列”,求m和a的值;
(2)若有窮遞增數列{bn}是“兌換系數”為a的“兌換數列”,求證:數列{bn}的前n項和
(3)已知有窮等差數列{cn}的項數是n(n≥3),所有項之和是B,試判斷數列{cn}是否是“兌換數列”?如果是的,給予證明,并用n和B表示它的“兌換系數”;如果不是,說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩欧美中文 | 美女被草视频网站 | 日韩一区在线观看视频 | 99国产精品视频免费观看一公开 | 看片地址| 毛片一区二区三区 | 欧洲一区二区视频 | 一区二区在线免费观看 | 天堂精品一区 | 久久成人综合 | 色99在线 | 台湾佬亚洲色图 | 91亚洲精品乱码久久久久久蜜桃 | 丝袜+亚洲+另类+欧美+变态 | 超碰日韩 | 国产亚洲精品久久久久动 | 国产精品毛片无码 | 美日韩精品视频 | 久久精品免费一区二区 | 成人精品久久久 | 免费观看一级特黄欧美大片 | 91久久国产综合久久蜜月精品 | 视频在线一区 | 麻豆资源 | 精品2区 | 黄色网在线| 国产999精品久久久久久麻豆 | 色狠狠一区 | 国产黄a三级三级看三级 | 欧美视频二区 | 国产精品三级久久久久久电影 | 97久久精品人人澡人人爽 | 日本黄色电影网站 | 精品国产31久久久久久 | 一区二区三区在线观看视频 | 亚洲人免费视频 | 黄色免费高清视频 | 欧美日韩电影一区二区三区 | 日韩一区二区在线观看视频 | 国内自拍视频在线观看 | 国产一级免费视频 |