【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:
組別 | |||||
頻數 |
(Ⅰ)求所得樣本的中位數(精確到百元);
(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態分布
,若該所大學共有學生
人,試估計有多少位同學旅游費用支出在
元以上;
(Ⅲ)已知樣本數據中旅游費用支出在范圍內的
名學生中有
名女生,
名男生,現想選其中
名學生回訪,記選出的男生人數為
,求
的分布列與數學期望.
附:若,則
,
,
.
科目:高中數學 來源: 題型:
【題目】已知數列的前
項和為
,且
()求數列
的通項公式;
()若數列
滿足
,求數列
的通項公式;
()在(
)的條件下,設
,問是否存在實數
使得數列
是單調遞增數列?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,楊老師的微信朋友圈內有
位好友參與了“微信運動”,他隨機選取了
位微信好友(女
人,男
人),統計其在某一天的走路步數.其中,女性好友的走路步數數據記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數情況可分為五個類別: 步)(說明:“
”表示大于等于
,小于等于
.下同),
步),
步),
步),
步及以
),且
三種類別人數比例為
,將統計結果繪制如圖所示的條形圖.
若某人一天的走路步數超過步被系統認定為“衛健型",否則被系統認定為“進步型”.
(1)若以楊老師選取的好友當天行走步數的頻率分布來估計所有微信好友每日走路步數的概率分布,請估計楊老師的微信好友圈里參與“微信運動”的名好友中,每天走路步數在
步的人數;
(2)請根據選取的樣本數據完成下面的列聯表并據此判斷能否有
以上的把握認定“認定類型”與“性別”有關?
衛健型 | 進步型 | 總計 | |
男 | 20 | ||
女 | 20 | ||
總計 | 40 |
(3)若從楊老師當天選取的步數大于10000的好友中按男女比例分層選取人進行身體狀況調查,然后再從這
位好友中選取
人進行訪談,求至少有一位女性好友的概率.
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了如圖所示的折線圖.根據該折線圖,下列結論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面上動點到點
的距離與到直線
的距離之比為
,記動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)設是曲線
上的動點,直線
的方程為
.
①設直線與圓
交于不同兩點
,
,求
的取值范圍;
②求與動直線恒相切的定橢圓
的方程;并探究:若
是曲線
:
上的動點,是否存在直線
:
恒相切的定曲線
?若存在,直接寫出曲線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,側面PAD為等邊三角形,AB=,AD=
, PB=
.
(1)求證:平面PAD⊥平面ABCD;
(2)M是棱PD上一點,三棱錐M-ABC的體積為1.記三棱錐P-MAC的體積為,三棱錐M-ACD的體積為
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設△ABC三個內角A、B、C所對的邊分別為已知
(1)求角B的大。
(2)如圖,在△ABC內取一點P,使得PB=2,過點P分別作直線BA、BC的垂線PM、PN,垂足分別是M、N,設∠PBA=求四邊形PMBN的面積的最大值及此時
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com