【題目】在正三角形中,
、
、
分別是
、
、
邊上的點,滿足
(如圖1).將△
沿
折起到
的位置,使二面角
成直二面角,連結
、
(如圖2)
(Ⅰ)求證:⊥平面
;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)取BE的中點D,連結DF∵AEEB=CF
FA=1
2,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,AE=DE=1,∴EF⊥AD,在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.∴A1E⊥BE∴A1E⊥平面BEF,即A1E⊥平面BEP(Ⅱ)
【解析】
試題不妨設正三角形ABC 的邊長為 3 .
(I)在圖1中,取BE的中點D,連結DF.
∵AEEB=CF
FA=1
2,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,
又AE=DE=1,∴EF⊥AD. 2分
在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.
由題設條件知此二面角為直二面角,∴A1E⊥BE.
又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP. .4分
(II)建立分別以ED、EF、EA為x軸、y軸、z軸的空間直角坐標系,則E(0,0,0),A(0,0,1),
B(2,0,0),F(0, ,0), P (1,
,0),則,
.
設平面ABP的法向量為,
由平面ABP知,
,即
令
,得
,
.
,設平面AFP的法向量為
.
由平面AFP知,
,即
令
,得
,
.
,
所以二面角B-A1P-F的余弦值是 13分
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐D-ABC中,二面角A-BC-D的大小為90°,且∠BDC=90°,∠ABC=30°,BC=3,.
(1)求證:AC⊥平面BCD;
(2)二面角B-AC-D為45°,且E為線段BC的中點,求直線AE與平面ACD所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓:
,長軸的右端點與拋物線
:
的焦點
重合,且橢圓
的離心率是
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作直線
交拋物線
于
,
兩點,過
且與直線
垂直的直線交橢圓
于另一點
,求
面積的最小值,以及取到最小值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,且經過點
.
求橢圓
的方程;
過點
且不與
軸重合的直線
與橢圓
交于不同的兩點
,
,過右焦點
的直線
分別交橢圓
于點
,設
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數的圖像向左平移
個單位后得到函數
的圖像,且函數
滿足
,則下列命題中正確的是()
A. 函數圖像的兩條相鄰對稱軸之間的距離為
B. 函數圖像關于點
對稱
C. 函數圖像關于直線
對稱
D. 函數在區間
內為單調遞減函數
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過300):
空氣質量指數 | ||||||
空氣質量等級 | 1級優 | 2級良 | 3級輕度污染 | 4級中度污染 | 5級重度污染 | 6級嚴重污染 |
該社團將該校區在2018年11月中10天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(1)以這10天的空氣質量指數監測數據作為估計2018年11月的空氣質量情況,則2018年11月中有多少天的空氣質量達到優良?
(2)從這10天的空氣質量指數監測數據中,隨機抽取三天,求恰好有一天空氣質量良的概率;
(3)從這10天的數據中任取三天數據,記表示抽取空氣質量良的天數,求
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極坐標建立極坐標系,圓
的極坐標方程為
.
求
的普通方程;
將圓
平移,使其圓心為
,設
是圓
上的動點,點
與
關于原點
對稱,線段
的垂直平分線與
相交于點
,求
的軌跡的參數方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com