設M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并記M=(1it-1it-2…i1i)2,對于給定的x1=(1it-1it-2…i1i)2,構造數列{xn}如下:x2=(1iit-1it-2…i2i1)2x3=(1i1iit-1it-2…i3i2)2,x4=(1i2i1iit-1it-2…i4i3)2…,若x1=27,則x4= (用數字作答).
【答案】分析:由M=2t+it-1×2t-1+…+i1×2+i,且ik=0或1,M=(1it-1it-2…i1i)2,x1=(1it-1it-2…i1i)2,得x1的表達式;由x1=27<32,得t=4;從而得i,i1,i2,i3;即得x4的值.
解答:解:由題意,x1=(1it-1it-2…i1i)2=2t+it-1×2t-1+…+i1×2+i=27,知t=4;
∴x1=24+1×23+0×22+1×2+1,這里i=1,i1=1,i2=0,i3=1;
∴x4=(1i2i1iit-1it-2…i4i3)2=2t+i2×2t-1+i1×2t-2+it-1×2t-3+…+i4×2+i3=24+0×23+1×22+1×2+1=23;
故答案為:23.
點評:本題用二進制的知識,考查了數列的綜合運用;解題時,關鍵是弄清題意,結合所學的知識,細心作答.