已知函數(shù)

(x≠0),各項(xiàng)均為正數(shù)的數(shù)列

中

,

,

.
(Ⅰ)求數(shù)列

的通項(xiàng)公式;
(Ⅱ)在數(shù)列

中,對(duì)任意的正整數(shù)

,

都成立,設(shè)

為數(shù)列

的前

項(xiàng)和試比較

與

的大小.
(1)

;
(2)

(I) 解題的關(guān)鍵是由題意知

,
∴

是以1為首項(xiàng)4為公差的等差數(shù)列.
(II)先確定


,然后采用裂項(xiàng)求和的方法求和即可.
解:(Ⅰ)由題意知

,
∴

是以1為首項(xiàng)4為公差的等差數(shù)列 .
∴

, ∴

, ∴

. ...................6分
(Ⅱ)


,
∴

.
...................13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列

滿足

,


.
(1)令

,求證:數(shù)列

為等比數(shù)列;
(2)求數(shù)列

的通項(xiàng)公式;
(3)求滿足

的最小正整數(shù)

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知兩個(gè)等差數(shù)列

和

的前

項(xiàng)和為

和

,且

,則

為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
數(shù)列

的前n項(xiàng)和

;

(n∈N*);則數(shù)列

的前50項(xiàng)和為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若

是等差數(shù)列,首項(xiàng)

,則使前n項(xiàng)和

成立的最大自然數(shù)n是( )
A.4025 | B.4024 4023 | C.4023 | D.4022 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列{a
n}中,a
1=1,a
2=3且2a
n+1=a
n+2+a
n(n∈N
*).?dāng)?shù)列{b
n}的前n項(xiàng)和為S
n,其中b
1=-

,b
n+1=-

S
n(n∈N
*).
(1)求數(shù)列{a
n}和{b
n}的通項(xiàng)公式;
(2)若T
n=

+

+…+

,求T
n的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,

、

、…、


是曲線

:

上的

個(gè)點(diǎn),點(diǎn)

(

)在

軸的正半軸上,且

是正三角形(

是坐標(biāo)原點(diǎn)).
(1)寫出

、

、

;
(2)求出點(diǎn)

(

)的橫坐標(biāo)

關(guān)于

的表達(dá)式并證明.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知等差數(shù)列

(

N+)中,

,

,

.
(Ⅰ)求數(shù)列

的通項(xiàng)公式;
(Ⅱ)若將數(shù)列

的項(xiàng)重新組合,得到新數(shù)列

,具體方法如下:

,

,

,

,…,依此類推,
第

項(xiàng)

由相應(yīng)的

中

項(xiàng)的和組成,求數(shù)列

的前

項(xiàng)和

.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知數(shù)列

的前

項(xiàng)和

,第

項(xiàng)滿足

,則

( )
查看答案和解析>>