【題目】如圖,第1個圖形由正三角形擴展而成,共12個頂點.第n個圖形是由正n+2邊形擴展而來 ,則第n+1個圖形的頂點個數是 ( )
(1)
(2)
(3)
(4)
A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)
科目:高中數學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測試,兩人在相同條件下各射擊10次,命中的環數如下:
甲:7,8,6,9,6,5,9,9,7,4.
乙:9,5,7,8,7,6,8,6,7,7.
(1)分別計算甲、乙兩人射擊命中環數的極差、眾數和中位數;
(2)分別計算甲、乙兩人射擊命中環數的平均數、方差、標準差;
(3)比較兩人的成績,然后決定選擇哪一個人參賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班數學興趣小組對函數的圖象和性質將進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是除
外的全體實數,
與
的幾組對應值列表如下:
其中,_________;
(2)根據上表數據,在如圖所示的平面直角坐標系中描點并畫出了函數圖象的一部分,請畫出該函數圖象的另一部分;
(3)觀察函數圖象,寫出一條函數性質;
(4)進一步探究函數圖象發現:
①函數圖象與軸交點情況是________,所以對應方程
的實數根的情況是________;
②方程有_______個實數根;
③關于的方程
有
個實數根,
的取值范圍是________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從年
月份,某市街頭出現共享單車,到
月份,根據統計,市區所有人騎行過共享單車的人數已占
,騎行過共享單車的人數中,有
是大學生(含大中專及高職),該市區人口按
萬計算,大學生人數約
萬人.
(1)任選出一名大學生,求他(她)騎行過共享單車的概率;
(2)隨單車投放數量增加,亂停亂放成為城市管理的問題,以下是累計投放單車數量與亂停亂放單車數量
之間的關系圖表:
累計投放單車數量 | |||||
亂停亂放單車數量 |
①計算關于
的線性回歸方程(其中
精確到
值保留三位有效數字),并預測當
時,單車亂停亂放的數量;
②已知該市共有五個區,其中有兩個區的單車亂停亂放數量超過標準.在“雙創”活動中,檢查組隨機抽取三個區調查單車亂停亂放數量, 表示“單車亂停亂放數量超過標準的區的個數”,求
的分布列和數學期望
.
參考公式和數據:回歸直線方程中的斜率和截距的最小二乘法估計公式分別為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一容量為50的樣本,數據的分組以及各組的頻數如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.
(1)列出樣本的頻率分布表.
(2)畫出頻率分布直方圖.
(3)根據頻率分布表,估計數據落在[15.5,24.5)內的可能性約是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整;
(2)是否在犯錯誤的概率不超過0.5%的前提下認為喜愛打籃球與性別有關?說明你的理由.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在直角坐標系中,曲線
的參數方程為
(
為參數),直線
的參數方程為
(
為參數).
(1)求和
的直角坐標方程;
(2)若曲線截直線
所得線段的中點坐標為
,求
的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com