如圖為橢圓C:
的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率
,
的面積為
.若點(diǎn)
在橢圓C上,則點(diǎn)
稱(chēng)為點(diǎn)M的一個(gè)“橢圓”,直線
與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問(wèn)是否存在過(guò)左焦點(diǎn)的直線
,使得以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說(shuō)明理由.
(1);(2)直線方程為
或
.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、直線的標(biāo)準(zhǔn)方程、圓的標(biāo)準(zhǔn)方程、韋達(dá)定理、向量垂直的充要條件等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、計(jì)算能力.第一問(wèn),利用橢圓的離心率和三角形面積公式列出表達(dá)式,解方程組,得到基本量a和b的值,從而得到橢圓的方程;第二問(wèn),直線l過(guò)左焦點(diǎn),所以討論直線的斜率是否存在,當(dāng)斜率不存在時(shí),可以直接寫(xiě)出直線方程,令直線與橢圓聯(lián)立,得到交點(diǎn)坐標(biāo),驗(yàn)證以PQ為直徑的圓不過(guò)坐標(biāo)原點(diǎn),當(dāng)斜率存在時(shí),直線與橢圓聯(lián)立,消參,利用韋達(dá)定理,證明,解出k的值.
(1)由題意,,即
,
,即
2分
又得:
∴橢圓的標(biāo)準(zhǔn)方程:
. 5分
(2)①當(dāng)直線的斜率不存在時(shí),直線
的方程為
聯(lián)立,解得
或
,
不妨令,
,所以對(duì)應(yīng)的“橢點(diǎn)”坐標(biāo)
,
.
而
所以此時(shí)以為直徑的圓不過(guò)坐標(biāo)原點(diǎn). 7分
②當(dāng)直線的斜率存在時(shí),設(shè)直線
的方程為
消去
得,
設(shè),則這兩點(diǎn)的“橢點(diǎn)”坐標(biāo)分別為
由根與系數(shù)關(guān)系得: 9分
若使得以為直徑的圓過(guò)坐標(biāo)原點(diǎn),則
而,∴
即,即
代入,解得:
所以直線方程為或
. 12分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程、直線的標(biāo)準(zhǔn)方程、圓的標(biāo)準(zhǔn)方程、韋達(dá)定理、向量垂直的充要條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)橢圓動(dòng)直線
與橢圓
只有一個(gè)公共點(diǎn)
,且點(diǎn)
在第一象限.
(1)已知直線的斜率為
,用
表示點(diǎn)
的坐標(biāo);
(2)若過(guò)原點(diǎn)的直線
與
垂直,證明:點(diǎn)
到直線
的距離的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)(2011•天津)設(shè)橢圓+
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.點(diǎn)P(a,b)滿(mǎn)足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn),若直線PF2與圓(x+1)2+=16相交于M,N兩點(diǎn),且|MN|=
|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線與橢圓
相交于
兩點(diǎn),點(diǎn)
是線段
上的一點(diǎn),
且點(diǎn)
在直線
上.
(1)求橢圓的離心率;
(2)若橢圓的焦點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)在單位圓
上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)(2,0)的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿(mǎn)足
(
為坐標(biāo)原點(diǎn)),當(dāng)
<
時(shí),求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為
,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿(mǎn)足
三點(diǎn)的圓與直線
相切.
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)作斜率為k的直線
與橢圓C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸相交于點(diǎn)P(m,0),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓經(jīng)過(guò)點(diǎn)P(1.
),離心率e=
,直線l的方程為x=4.
(1)求橢圓C的方程;
(2)AB是經(jīng)過(guò)右焦點(diǎn)F的任一弦(不經(jīng)過(guò)點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為.問(wèn):是否存在常數(shù)λ,使得
?若存在,求λ的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓,經(jīng)過(guò)橢圓
的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)圓外一點(diǎn)
傾斜角為
的直線
交橢圓于C,D兩點(diǎn),
(1)求橢圓的方程;
(2)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,
為坐標(biāo)原點(diǎn),橢圓的右準(zhǔn)線與
軸的交點(diǎn)是
.
(1)點(diǎn)在已知橢圓上,動(dòng)點(diǎn)
滿(mǎn)足
,求動(dòng)點(diǎn)
的軌跡方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)
,求
的面積的最大值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com