日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(1)求矩陣A;
(2)若向量β=
7
4
,計算A5β的值.
(1)由題知:
1a
-1b
2
1
=2
2
1
,即2+a=4,-2+b=2,解得a=2,b=4,
所以A=
12
-14

(2)矩陣A的特征多項式為f(λ)=
.
λ-1
1
-2
λ-4
.
2-5λ+6=0,
得λ1=2,λ2=3,
當(dāng)λ1=2時,α1=
2
1
,當(dāng)λ2=3時,得α2=
1
1
. 則A=2
2
1
=3
1
1

由β=mα1+nα2=m
2
1
+n
1
1
=
7
4
得:
2m+n=7
m+n=4
解得
m=3
n=1
,則β=3α12
∴A5β=A5(3α12)=3(A5α1)+A5α2=3(
λ51
α1)+
λ52
α2=3×25
2
1
+35
1
1
=
435
339
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(1)求矩陣A;
(2)若向量β=
7
4
,計算A5β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

矩陣與變換.已知矩陣A=
1a
-1b
,A的一個特征值λ=2,屬于λ的特征向量是
α1
=
2
1
,求矩陣A與其逆矩陣.
坐標(biāo)系與參數(shù)方程已知直線l的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在曲線C:
x=-1+cosθ
y=sinθ
(θ為參數(shù))
上求一點,使它到直線l的距離最小,并求出該點坐標(biāo)和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:矩陣與變換
已知矩陣A=
.
1a
-1b
.
,A的一個特征值λ=2,其對應(yīng)的特征向量是α1=
.
2
1
.

(Ⅰ)求矩陣A;
(Ⅱ)求直線y=2x在矩陣M所對應(yīng)的線性變換下的像的方程.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产一区二区黑人欧美xxxx | 中文字幕亚洲一区二区va在线 | 国产中文一区 | 天堂在线视频精品 | 日本黄网站在线观看 | 三级免费黄 | 先锋资源中文字幕 | 欧美精品在线视频 | 亚洲欧美日韩国产一区 | 日本免费看 | 国产99久久精品一区二区永久免费 | 天堂在线视频精品 | 亚欧在线观看 | 欧美亚洲国产一区 | 日韩视频精品 | 亚洲精品一区二区三区蜜桃下载 | 97在线资源| 欧美久久成人 | 九九久久这里只有精品 | 丁香婷婷久久久综合精品国产 | 精品视频在线观看 | 91亚洲福利 | 一级免费片| 色av一区| 国产乱码精品一品二品 | 色婷婷小说| 久久亚洲一区二区三 | 色综合天天综合网国产成人网 | 四虎成人在线视频 | 久久高清国产 | 午夜视频91| 日韩视频一区二区三区在线观看 | 18毛片| 人人草人人 | 亚洲一区二区免费 | 免费观看成人性生生活片 | 日韩精品一区二区三区老鸭窝 | 中文字幕av亚洲精品一部二部 | 在线观看国产日韩欧美 | 天天看天天做 | 欧美精品片 |