【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進的次數之和不少于次稱為“優秀小組”.小明與小亮同一小組,小明、小亮投籃投進的概率分別為
.
(1)若,
,則在第一輪游戲他們獲“優秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優秀小組”次數為
次,則理論上至少要進行多少輪游戲才行?并求此時
的值.
【答案】(1)(2)理論上至少要進行
輪游戲.
【解析】
(1)分①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次三種情況進行求和即可.
(2)同(1),分別計算三種情況的概率化簡求和,再代入可知
,再設
,根據二次函數在區間上的最值方法求解可得當
時,
.再根據他們小組在
輪游戲中獲“優秀小組”次數
滿足
,利用二項分布的方法求解即可.
解:(1)由題可知,所以可能的情況有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次.
故所求概率
(2)他們在一輪游戲中獲“優秀小組”的概率為
因為
,所以
因為,
,
,所以
,
,又
所以,令
,以
,則
當時,
,他們小組在
輪游戲中獲“優秀小組”次數
滿足
由,則
,所以理論上至少要進行
輪游戲.此時
,
,
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,點
,
,
分別是橢圓
的左、右焦點,
為等腰三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點作直線
交橢圓于
兩點,其中
,另一條過
的直線
交橢圓于
兩點(不與
重合),且
點不與點
重合. 過
作
軸的垂線分別交直線
,
于
,
.
①求點坐標; ②求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數).以原點
為極點,以
軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓
的方程為
被圓
截得的弦長為
.
(Ⅰ)求實數的值;
(Ⅱ)設圓與直線
交于點
,若點
的坐標為
,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進的次數之和不少于次稱為“優秀小組”.小明與小亮同一小組,小明、小亮投籃投進的概率分別為
.
(1)若,
,則在第一輪游戲他們獲“優秀小組”的概率;
(2)若則游戲中小明小亮小組要想獲得“優秀小組”次數為
次,則理論上至少要進行多少輪游戲才行?并求此時
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,其焦距為
,點E為橢圓的上頂點,且
.
(1)求橢圓C的方程;
(2)設圓的切線l交橢圓C于A,B兩點(O為坐標原點),求證
;
(3)在(2)的條件下,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一片產量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質量(均在l至11kg)頻數分布表如下(單位: kg):
分組 | | | | | |
頻數 | 10 | 15 | 45 | 20 | 10 |
以各組數據的中間值代表這組數據的平均值,將頻率視為概率.
(1)由種植經驗認為,種植園內的水果質量近似服從正態分布
,其中
近似為樣本平均數
近似為樣本方差
.請估算該種植園內水果質量在
內的百分比;
(2)現在從質量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質量
的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為
元,求
的分布列及數學期望.
附:
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了迎接2019年全國文明城市評比,某市文明辦對市民進行了一次文明創建知識的網絡問卷調查.每一位市民有且僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的1000人的得分(滿分:100分)數據,統計結果如下表所示:
組別 | |||||||
頻數 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數分布表可以認為,此次問卷調查的得分服從正態分布
,
近似為這1000人得分的平均值(同一組數據用該組區間的中點值作為代表),請利用正態分布的知識求
;
(2)在(1)的條件下,文明辦為此次參加問卷調查的市民制定如下獎勵方案:
(i)得分不低于的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
(ii)每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現市民小王要參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求
的分布列及數學期望.
附:①;
②若,則
,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,M,M1分別為AB,A1B1中點.
(1)求證:C1M1∥面A1MC;
(2)若面ABC⊥面ABB1A1,△AB1B為正三角形,AB=2,BC=1,,求四棱錐B1﹣AA1C1C的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com