日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=19
(1)求$\overrightarrow{a}$與$\overrightarrow{b}$的夾角θ
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow{b}$),求λ的值.

分析 (1)運用向量數量積的性質:向量的平方即為模的平方,可得$\overrightarrow a•\overrightarrow b=-3$,再由向量夾角公式,計算即可得到所求值;
(2)由向量垂直的條件:數量積為0,解方程即可得到所求值.

解答 解:(1)由$({2\overrightarrow a-3\overrightarrow b})•({2\overrightarrow a+\overrightarrow b})=19$
可得$4{|{\overrightarrow a}|^2}-4\overrightarrow a•\overrightarrow b-3{|{\overrightarrow b}|^2}=19$.
又∵$|{\overrightarrow a}|=2,|{\overrightarrow b}|=\sqrt{3}$,
∴$16-4\overrightarrow a•\overrightarrow b-9=19$,
即$\overrightarrow a•\overrightarrow b=-3$,
∴$cosθ=\frac{\overrightarrow a•\overrightarrow b}{{|{\overrightarrow a}|•|{\overrightarrow b}|}}=\frac{-3}{{2×\sqrt{3}}}=-\frac{{\sqrt{3}}}{2}$.
∵0≤θ≤π,
∴$θ=\frac{5π}{6}$.
(2)由$\overrightarrow a⊥(\overrightarrow a+λ\overrightarrow b)$可得,$\overrightarrow a•(\overrightarrow a+λ\overrightarrow b)=0$,
即${\overrightarrow a^2}+λ\overrightarrow a•\overrightarrow b=0$,
即4-3λ=0,
解得$λ=\frac{4}{3}$.

點評 本題考查向量的數量積的定義和夾角公式,以及向量數量積的性質,向量的平方即為模的平方和向量垂直的條件:數量積為0,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知定認在R上的可導函數f(x)的導函數f′(x),若對于任意實數x,有f′(x)<f(x),且y=f(x)-1為奇函數,則不等式f(x)<ex的解集為(  )
A.(0,+∞)B.(-∞,0)C.(-∞,e4D.(e4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若函數f(x)的導函數f′(x)=x2-3x-10,則函數f(1-x)的單調遞增區間是(  )
A.($\frac{3}{2}$,+∞)B.(-$\frac{1}{2}$,+∞)C.(-4,3)D.(-∞,-4)和(3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.若0<x<$\frac{π}{4},sin(\frac{π}{4}-x)=\frac{5}{13}$,則$\frac{cos2x}{{cos(\frac{π}{4}+x)}}$=(  )
A.$\frac{24}{13}$B.$-\frac{24}{13}$C.$\frac{10}{13}$D.$-\frac{10}{13}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知向量$\overrightarrow{m}$=(2sinθ,sinθ-cosθ),$\overrightarrow n=(cosθ,-2-m)$,函數$f(θ)=\overrightarrow m•\overrightarrow n$的最小值為g(m).
(1)當m=2時,求g(m)的值;
(2)求g(m);
(3)已知函數h(x)為定義在R上的增函數,且對任意的x1,x2都滿足h(x1+x2)=h(x1)+h(x2),問:是否存在這樣的實數m,使不等式$h(\frac{4}{sinθ-cosθ})+h(2m+3)>h(f(θ))$對所有$θ∈(\frac{π}{4},π)$恒成立.若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.某個命題與正整數有關,若當n=k(k∈N*)時該命題成立,那么可推得當n=k+1時該命題也成立,現已知當n=9時該命題不成立,那么可推得(  )
A.當n=10時,該命題不成立B.當n=10時,該命題成立
C.當n=8時,該命題成立D.當n=8時,該命題不成立

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.設f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)討論f(x)的單調區間;
(2)若f(x)在[1,+∞)上存在單調遞增區間,求a的取值范圍;
(3)當0<a<2時,f(x)在[1,4]上的最小值為-$\frac{16}{3}$,求f(x)在該區間上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.數列{an}滿足:an+1=2an+1,a1=1.
(Ⅰ)證明:數列{an+1}是等比數列,并求數列{an}的通項公式;
(Ⅱ)設bn=$\frac{1}{{{{log}_2}({{a_n}+1})}}$,n∈N*,求證:b1•b2+b2•b3+…+bn•bn+1<1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.數列-1,4,-9,16,-25…的一個通項公式為(  )
A.an=n2B.${a_n}={(-1)^n}{n^2}$C.${a_n}={(-1)^{n+1}}{n^2}$D.${a_n}={(-1)^n}{(n+1)^2}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久首页 | 国产二区视频 | 一区二区三区免费在线观看 | 天天躁日日躁狠狠躁av麻豆 | 在线一区视频 | 国产99精品 | 亚洲男人的天堂网站 | 国产伦精品久久久一区二区三区 | 日韩精品成人 | 国产精品久久久久毛片软件 | av在线国产精品 | 国产小视频在线 | 天堂动漫| 欧美在线| 一级特黄色大片 | 成人在线视频免费 | 美日韩在线| 日本一区二区精品视频 | 午夜爱视频| 亚洲一区二区三区视频 | 成人国产精品免费观看 | 白浆在线 | 成人久久久 | 国产激情网址 | 国产亚洲欧美一区二区 | 中文字幕一区二区三区四区 | 日日精品| 日韩一区精品 | 国产精品自产拍在线观看桃花 | 美女视频黄又黄又免费 | 黄色小视频免费观看 | 91精品国产入 | 一级欧美| 成人a视频| 日韩在线观看视频一区 | 97色免费视频 | 国产成人精品久久 | 国产精品久久久久一区二区三区 | 欧美精品三区 | 先锋影音在线观看 | 欧美一级在线观看 |