【題目】給定兩個命題,P:對任意實數x都有ax2+ax+1>0恒成立;Q:關于x的方程x2﹣x+a=0有實數根;如果P與Q中有且僅有一個為真命題,求實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cosωxsin(ωx+ )(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區間[0, ]上的單調性;
(3)當x∈[0, ]時,關于x的方程f(x)=a 恰有兩個不同的解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數f(x)的最小正周期;
(2)函數f(x)的單調減區間;
(3)函數f(x)圖象的對稱軸和對稱中心.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6名選手參賽,在第一輪筆試環節中,評委將他們的筆試成績作為樣本數據,繪制成如圖所示的莖葉圖,為了增加結果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告訴大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.
(1)求乙班總分超過甲班的概率;
(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.若主持人從甲乙兩班所有選手成績中分別隨機抽取2個,記抽取到“晉級”選手的總人數為,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+
=0相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于兩點A,B,當時,求直線斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
平面
,四邊形
是菱形,
,
,且
,
交于點
,
是
上任意一點.
(1)求證: ;
(2)已知二面角的余弦值為
,若
為
的中點,求
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com