日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xOy中,已知圓心在第二象限,半徑為2的圓C與直線y=x相切于坐標原點O.橢圓=1與圓C的一個交點到橢圓兩點的距離之和為10.
(1)求圓C的方程;
(2)試探求C上是否存在異于原點的點Q,使Q到橢圓右焦點F的距離等于線段OF的長.若存在,請求出點Q的坐標;若不存在,請說明理由.
【答案】分析:(1)中,設出圓的標準方程,由相切和過原點的條件,建立方程求解.
(2)中,要探求是否存在異于原點的點Q,使得該點到右焦點F的距離等于|OF|的長度4,我們可以轉化為探求以右焦點F為圓心,半徑為4的圓(x─4)2+y2=8與(1)所求的圓的交點數.
解答:解:(1)設圓心坐標為(m,n)(m<0,n>0),
則該圓的方程為(x-m)2+(y-n)2=8已知該圓與直線y=x相切,
那么圓心到該直線的距離等于圓的半徑,則=2
即|m-n|=4①
又圓與直線切于原點,將點(0,0)代入得m2+n2=8②
聯立方程①和②組成方程組解得
故圓的方程為(x+2)2+(y-2)2=8;
(2)|a|=5,∴a2=25,則橢圓的方程為=1
其焦距c==4,右焦點為(4,0),那么|OF|=4.
通過聯立兩圓的方程,解得x=,y=
即存在異于原點的點Q(),
使得該點到右焦點F的距離等于|OF|的長.
點評:本題考查的是圓的位置關系和圓錐曲線的基本概念的理解.對于題中第二小問中,探求是否存在異于原點的點Q,使得該點到右焦點F的距離等于|OF|的長度4,轉化為探求以右焦點F為頂點,半徑為4的圓(x─4)2+y2=8與(1)所求的圓的交點數.可使問題簡化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數方程(以t為參數)及普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久久久久国产精品 | 在线免费观看黄色av | 91精品国产欧美一区二区成人 | 婷婷中文字幕 | 国产1区| 香蕉黄色一级片 | 久久成人在线视频 | 亚洲一区二区三区四区在线 | porn一区 | 色婷婷在线视频观看 | 国产视频一区二区 | 一区二区三区精品视频 | 超碰999| 日韩视频一区 | 日本激情网 | 日韩在线视频一区二区三区 | 日韩视频一区在线观看 | 久久成人国产 | 日本一区二区免费看 | 欧美在线网站 | 久久久久综合狠狠综合日本高清 | 欧美一区二区三区爽大粗免费 | 欧美日本国产欧美日本韩国99 | 在线观看成人小视频 | 欧美在线免费 | 亚洲国产高清视频 | 国产女人免费看a级丨片 | 欧美v在线 | 欧美日产在线观看 | 污网站在线观看视频 | 亚洲一级毛片 | 妞干网免费 | 国产美女在线播放 | 日韩国产精品一区二区三区 | 国产视频久久久久久 | www精品美女久久久tv | 日韩高清成人 | 日本一二区视频 | 欧美大片一区二区 | 久久精品店 | 国产99久久久国产精品 |