【題目】已知函數f(x)=-x2+ef′(
)x.
(Ⅰ)求f(x)的單調區間;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求證:x1+x2<2.
【答案】(Ⅰ)在R上單調遞增;(Ⅱ)見解析
【解析】
(I)f′(x)=e2(x-1)-2x+ef′().令x=
,則f′(
)=
-1+ef′(
),解得f′(
),進而得出函數f(x)的單調性.
(II)由(I)可得:函數f(x))=-x2+x在R上單調遞增.要證明:x1+x2<2x1<2-x2f(x1)<f(2-x2),又f(x1)+f(x2)=1,因此f(x1)<f(2-x2)1-f(x2)<f(2-x2),即f(x2)+f(2-x2)-1>0,f(1)=
-1+1=
,則x1<1<x2.令g(x)=f(2-x)+f(x)-1=
+
-2x2+4x-2,x>1,g(1)=0.利用導數研究其單調性即可證明結論.
(I)f′(x)=e2(x-1)-2x+ef′().
令x=,則f′(
)=
-1+ef′(
),解得f′(
)=
.
∴f′(x)=e2(x-1)-2x+1.f″(x)=2e2(x-1)-2=2(ex-1+1)(ex-1-1),
時
單調遞增;
時
單調遞減,
∴x=1時,函數f′(x)取得極小值即最小值,∴f′(x)≥f′(1)=0,
∴函數f(x)在R上單調遞增.
(II)由(I)可得:函數f(x)=-x2+x在R上單調遞增.
要證明:x1+x2<2x1<2-x2f(x1)<f(2-x2),
又f(x1)+f(x2)=1,因此f(x1)<f(2-x2)1-f(x2)<f(2-x2),
即f(x2)+f(2-x2)-1>0,f(1)==
,則x1<1<x2.
令g(x)=f(2-x)+f(x)-1=-(2-x)2+2-x+
-x2+x=
+
-2x2+4x-2,x>1,g(1)=0.g′(x)=-e2(1-x)+e2(x-1)-4x+4,
g″(x)=2e2(1-x)+2e2(x-1)-4≥0,∴g′(x)在(1,+∞)上單調遞增.
∴g′(x)>g′(1)=0,∴函數g(x)在(1,+∞)上單調遞增.
∴g(x)>g(1)=0,因此結論x1+x2<2成立.
科目:高中數學 來源: 題型:
【題目】某企業生產了一種新產品,在推廣期邀請了100位客戶試用該產品,每人一臺.試用一個月之后進行回訪,由客戶先對產品性能作出“滿意”或“不滿意”的評價,再讓客戶決定是否購買該試用產品(不購買則可以免費退貨,購買則僅需付成本價).經統計,決定退貨的客戶人數是總人數的一半,“對性能滿意”的客戶比“對性能不滿意”的客戶多10人,“對性能不滿意”的客戶中恰有選擇了退貨.
(1)請完成下面的列聯表,并判斷是否有
的把握認為“客戶購買產品與對產品性能滿意之間有關”.
對性能滿意 | 對性能不滿意 | 合計 | |
購買產品 | |||
不購買產品 | |||
合計 |
(2)企業為了改進產品性能,現從“對性能不滿意”的客戶中按是否購買產品進行分層抽樣,隨機抽取6位客戶進行座談.座談后安排了抽獎環節,共有4張獎券,獎券上分別印有200元、400元、600元和800元字樣,抽到獎券可獲得相應獎金.6位客戶有放回的進行抽取,每人隨機抽取一張獎券,求6位客戶中購買產品的客戶人均所得獎金不少于500元的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從8名運動員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?(用數字結尾)
(1)甲、乙兩人必須跑中間兩棒;
(2)若甲、乙兩人只有一人被選且不能跑中間兩棒;
(3)若甲、乙兩人都被選且必須跑相鄰兩棒.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:
的左、右焦點分別為
,
軸,直線
交
軸于
點,
,
為橢圓
上的動點,
的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓
分別交于
且使
軸,如圖,問四邊形
的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:
的左、右焦點分別為
,
軸,直線
交
軸于
點,
,
為橢圓
上的動點,
的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓
分別交于
且使
軸,如圖,問四邊形
的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】畫糖人是一種以糖為材料在石板上進行造型的民間藝術.某糖人師傅在公園內畫糖人,每天賣出某種糖人的個數與價格相關,其相關數據統計如下表:
每個糖人的價格 | 9 | 10 | 11 | 12 | 13 |
賣出糖人的個數 | 54 | 50 | 46 | 43 | 39 |
(1)根據表中數據求關于
的回歸直線方程;
(2)若該種造型的糖人的成本為2元/個,為使糖人師傅每天獲得最大利潤,則該種糖人應定價多少元?(精確到1元)
參考公式:回歸直線方程,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,圓
,點
是圓上一動點,
的垂直平分線與
交于點
.
(1)求點的軌跡方程;
(2)設點的軌跡為曲線
,過點
且斜率不為0的直線
與
交于
兩點,點
關于
軸的對稱點為
,證明直線
過定點,并求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com