【題目】已知函數(shù) (其中
為自然對數(shù)的底數(shù)),若函數(shù)
有4個零點,則
的取值范圍為( )
A. B.
C.
D.
【答案】D
【解析】考查函數(shù),求導(dǎo)可得
,
函數(shù)的定義域為
,據(jù)此可得函數(shù)
在區(qū)間
和
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
函數(shù)是定義在
上關(guān)于
軸對稱的偶函數(shù),
分別對應(yīng)建立兩個平面直角坐標(biāo)系,
第一個坐標(biāo)系按照我們熟悉的坐標(biāo)系繪制函數(shù)的圖像,
第二個坐標(biāo)系以水平方向為軸方向,以豎直方向為
軸方向,
在第一個坐標(biāo)系中繪制函數(shù)的圖像,
在第二個坐標(biāo)系中繪制函數(shù)的圖像,
如圖所示的直線位置處可以找到滿足題意的方程的四個零點,
函數(shù)零點的值為點處的橫坐標(biāo),
觀察可得, 的取值范圍為
,其中
,題中直線
為臨界條件,
臨界條件處: ,
,
.
結(jié)合選項,滿足所得結(jié)論形式的區(qū)間只有D選項.
本題選擇D選項.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱椎中,
是棱
上一點,且
,底面
是邊長為2的正方形,
為正三角形,且平面
平面
,平面
與棱
交于點
.
(1)求證:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中心在原點,焦點在軸上的橢圓
過點
,且離心率為
.
為
的右焦點,
為
上一點,
軸,
的半徑為
.
(1)求和
的方程;
(2)若直線與
交于
兩點,與
交于
兩點,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)舉行的物理知識競賽中,將三個年級參賽學(xué)生的成績在進(jìn)行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.
(1)求成績在50-70分的頻率是多少
(2)求這三個年級參賽學(xué)生的總?cè)藬?shù)是多少:
(3)求成績在80-100分的學(xué)生人數(shù)是多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試后,對全班同學(xué)的數(shù)學(xué)成績進(jìn)行整理,得到表:
分?jǐn)?shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB的端點B的坐標(biāo)為(3,0),端點A在圓上運動;
(1)求線段AB中點M的軌跡方程;
(2)過點C(1,1)的直線m與M的軌跡交于G、H兩點,求以弦GH為直徑的圓的面積最小值及此時直線m的方程.
(3)若點C(1,1),且P在M軌跡上運動,求的取值范圍.(O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為(
為參數(shù)),點M的直角坐標(biāo)為
.
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的長軸長為6,且橢圓
與圓
:
的公共弦長為
.
(1)求橢圓的方程.
(2)過點作斜率為
的直線
與橢圓
交于兩點
,
,試判斷在
軸上是否存在點
,使得
為以
為底邊的等腰三角形.若存在,求出點
的橫坐標(biāo)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com