【題目】設函數f(x)=ax3﹣3x+1(x∈R),若對于任意的x∈[﹣1,1]都有f(x)≥0成立,則實數a的值為 .
【答案】4
【解析】解:由題意,f′(x)=3ax2﹣3, 當a≤0時3ax2﹣3<0,函數是減函數,f(0)=1,只需f(1)≥0即可,解得a≥2,與已知矛盾,
當a>0時,令f′(x)=3ax2﹣3=0解得x=± ,
①當x<﹣ 時,f′(x)>0,f(x)為遞增函數,
②當﹣ <x<
時,f′(x)<0,f(x)為遞減函數,
③當x> 時,f(x)為遞增函數.
所以f( )≥0,且f(﹣1)≥0,且f(1)≥0即可
由f( )≥0,即a
﹣3
+1≥0,解得a≥4,
由f(﹣1)≥0,可得a≤4,
由f(1)≥0解得2≤a≤4,
綜上a=4為所求.
所以答案是:4.
【考點精析】關于本題考查的函數的最大(小)值與導數,需要了解求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】甲乙兩機床同時加工直徑為100mm的零件,為檢驗質量,隨機從中各抽取5件,測量結果如圖,請說明哪個機床加工的零件較好?
甲 | 99 | 100 | 98 | 100 | 103 |
乙 | 99 | 100 | 102 | 99 | 100 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB=1,AA1= ,D為AA1的中點,BD與AB1交于點O,CO⊥側面ABB1A1 .
(1)證明:BC⊥AB1;
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=xex﹣ax2﹣x,a∈R.
(1)當a= 時,求函數f(x)的單調區間;
(2)若對x≥1時,恒有f(x)≥xex+ax2成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點A到平面BDE的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com