日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

       由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f -1(x)能確定數(shù)列{bn},bn= f –1(n),若對于任意nÎN*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.

   (1)若函數(shù)f(x)=確定數(shù)列{an}的自反數(shù)列為{bn},求an

   (2)已知正數(shù)數(shù)列{cn}的前n項之和Sn=(cn+).寫出Sn表達式,并證明你的結論;

   (3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數(shù)列{dn}的前n項之和,且Dn>log a (1-2a)恒成立,求a的取值范圍.

參考答案

本題共有3個小題,第1小題滿分3分,第2小題滿分7分,第3小題滿分8分)

       解:(1)由題意的:f -1(x)== f(x)=,所以p =-1,…………2分

       所以an=……………………………………………………………………3分翰林匯

   (2)因為正數(shù)數(shù)列{cn}的前n項之和Sn=(cn+),

       所以c1=(c1+),解之得:c1=1,S1=1……………………………………4分

       當n ≥ 2時,cn = Sn–Sn–1,所以2Sn = Sn–Sn–1 +,……………………5分

       Sn +Sn–1 = ,即:= n,……………………………………7分

       所以,= n–1,= n–2,……,=2,累加得:

       =2+3+4+……+ n,………………………………………………9分

       =1+2+3+4+……+ n =

       Sn=………………………………………………………………10分

   (3)在(1)和(2)的條件下,d1=2,

       當n≥2時,設dn===2(),…………………13分

       由Dn是{dn}的前n項之和,

       Dn=d1+d2+……+dn=2[1+()+()+()+……+()]

       =2(2–)………………………………………………………………………………16分

       因為Dn>log a (1–2a)恒成立,即log a (1–2a)恒小于Dn的最小值,

       顯然Dn的最小值是在n=1時取得,即(Dnmin=2,

       所以log a (1–2a)<2,1–2a>0,所以0<a<–1……………………………………18分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項公式;
(2)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍;
(3)設cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項組成的數(shù)列為{tn},求數(shù)列{tn}前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項之和,Hn為數(shù)列{Sn}的調和平均數(shù),求
lim
n→∞
=
Hn
n

(3)已知正數(shù)數(shù)列{cn}的前n項之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn
(2)設cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項組成的數(shù)列為{tn}
(公共項tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項和S10
(3)對(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對任意的正整數(shù)n恒成立,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項和Sn
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項公式;
(3)對(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對任意的正整數(shù)n恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 999免费视频 | 久久久精品一区 | 香港三级日本三级a视频 | 色图一区| 精品一区二区久久久久久久网站 | 中文在线一区 | 国产高潮在线观看 | 久久久99精品免费观看 | 亚洲情欲网 | 中文精品在线 | 男人的天堂在线视频 | 日韩精品一区二区三区在线播放 | 精品国产乱码久久久久久1区2区 | 国产色99精品9i | 99re国产| 狠狠色噜噜狠狠狠合久 | 超级乱淫片国语对白免费视频 | 国产成人久久 | 国产免费av一区二区三区 | 神马久久久久久久久久 | 国产一区二区视频在线观看 | 亚洲六月丁香色婷婷综合久久 | 国产精品久久久久久久久久久久久 | 国产精品视频久久久久 | 久久福利 | 国产成人av一区二区 | 国产成人 综合 亚洲 | 青青青国产精品一区二区 | 久久精品1区2区 | 欧美激情第二页 | xoxo国产三区精品欧美 | 九九视频这里只有精品 | 日韩视频在线观看 | 亚洲精品一级 | 精品一区二区三区久久久 | 日本久草 | 国产精品视频黄色 | 久久久久久免费 | 亚洲精品日韩色噜噜久久五月 | 久久免费视频一区二区 | 巨大黑人极品videos精品 |