【題目】下列函數,在區間(0,+∞)上為增函數的是( )
A.y=ln(x+2)
B.
C.
D.
【答案】A
【解析】解:A,y=ln(x+2)在(﹣2,+∞)上為增函數,故在(0,+∞)上為增函數,A正確;
B, 在[﹣1,+∞)上為減函數;排除B
C, 在R上為減函數;排除C
D, 在(0,1)上為減函數,在(1,+∞)上為增函數,排除D
故選 A
【考點精析】本題主要考查了函數單調性的判斷方法和對數函數的單調性與特殊點的相關知識點,需要掌握單調性的判定法:①設x1,x2是所研究區間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;過定點(1,0),即x=1時,y=0;a>1時在(0,+∞)上是增函數;0>a>1時在(0,+∞)上是減函數才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知正項等差數列{an}的前n項和為Sn , 且滿足 ,S7=56.
(1)求數列{an}的通項公式an;
(2)若數列{bn}滿足b1=a1且bn+1﹣bn=an+1 , 求數列 的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的一次函數.
(Ⅰ)設集合和
,分別從集合
和
中隨機取一個數作為m和n,求函數
是增函數的概率;
(Ⅱ)實數m,n滿足條件求函數
的圖象經過一、二、三象限的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于實數a和b,定義運算“*”:a*b= 設f(x)=(2x﹣1)*(x﹣1),且關于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數根x1 , x2 , x3 , 則x1x2x3的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四面體A-BCD中,AD平面BCD,BC
CD,CD=2,AD=4.M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
(I)證明:PQ//平面BCD;
(II)若異面直線PQ與CD所成的角為,二面角C-BM-D的大小為
,求cos
的值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在[﹣2,2]上的奇函數,當x∈(0,2]時,f(x)=2x﹣1,函數g(x)=x2﹣2x+m.如果對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實數m的取值范圍是
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com