日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=2lnx-x2(x>0).
(1)求函數f(x)的單調區間與最值;
(2)若方程2xlnx+mx-x3=0在區間[
1e
,e]
內有兩個不相等的實根,求實數m的取值范圍;  (其中e為自然對數的底數)
(3)如果函數g(x)=f(x)-ax的圖象與x軸交于兩點A(x1,0),B(x2,0),且0<x1<x2,求證:g'(px1+qx2)<0(其中,g'(x)是g(x)的導函數,正常數p,q滿足p+q=1,q>p)
分析:(1)由f′(x)=
2
x
-2x=
2(1-x)(1+x)
x
,x>0,知當0<x<1時,f'(x)>0,f(x)單調遞增;當x>1時,f'(x)<0,f(x)單調遞減.由此能求出函數f(x)的單調區間與最值.
(2)方程2xlnx+mx-x3=0化為-m=2lnx-x2,由f(x)在區間[
1
e
,e]
上的最大值為-1,f(
1
e
)=-2-
1
e2
,f(e)=2-e2f(e)<f(
1
e
)
.知f(x)在區間[
1
e
,e]
上的最小值為-2-
1
e2
.由此能求出實數m的取值范圍.
(3)由g′(x)=
2
x
-2x-a
,又f(x)-ax=0有兩個實根x1,x2,知
2lnx1-x12-ax1=0
2lnx2-x22-ax2=0.
兩式相減,得2(lnx1-lnx2)-(x12-x22)=a(x1-x2)由此入手能夠證明:
x2-x1
px1+qx2
+ln
x1
x2
<0
.g′(px1+qx2)<0.
解答:解:(1)∵f′(x)=
2
x
-2x=
2(1-x)(1+x)
x
,x>0,
∴當0<x<1時,f'(x)>0,f(x)單調遞增;當x>1時,f'(x)<0,f(x)單調遞減.
∴當x=1時,f(x)有極大值,也是最大值,即為-1,但無最小值.
故f(x)的單調遞增區間為(0,1),單調遞減區間為(1,+∞);最大值為-1,但無最小值.
(2)方程2xlnx+mx-x3=0化為-m=2lnx-x2,由(1)知,f(x)在區間[
1
e
,e]
上的最大值為-1,f(
1
e
)=-2-
1
e2
,f(e)=2-e2f(e)<f(
1
e
)

∴f(x)在區間[
1
e
,e]
上的最小值為-2-
1
e2

故-m=2lnx-x2在區間[
1
e
,e]
上有兩個不等實根需滿足-2-
1
e2
≤-m<-1

1<m≤2+
1
e2
,∴實數m的取值范圍為(1,2+
1
e2
]

(3)∵g′(x)=
2
x
-2x-a
,又f(x)-ax=0有兩個實根x1,x2
2lnx1-x12-ax1=0
2lnx2-x22-ax2=0.
兩式相減,得2(lnx1-lnx2)-(x12-x22)=a(x1-x2
a=
2(lnx1-lnx2)
x1-x2
-(x1+x2),(x1>0,x2>0)

于是g/(px1+qx2)=
2
px1+qx2
-2(px1+qx2)-
2(lnx1-lnx2)
x1-x2
+(x1+x2)

=
2
px1+qx2
-
2(lnx1-lnx2)
x1-x2
+(2p-1)(x2-x1)

∵q>p,∴2q≥1,∵2p≤1,∴(2p-1)(x2-x1)<0.
要證:g′(px1+qx2)<0,只需證:
2
px1+qx2
+
2(lnx1-lnx2)
x2-x1
<0.
只需證:
x2-x1
px1+qx2
+ln
x1
x2
<0
.(*)
x1
x2
=t∈(0,1)
,∴(*)化為
1-t
pt+q
+lnt<0

只證u(t)=lnt+
1-t
pt+q
<0
即可.u/(t)=
1
t
+
-(pt+q)-(1-t)•p
(pt+q)2
=
1
t
-
1
(pt+q)2
=
(pt+q)2-t
t(pt+q)2

=
p2(t-1)(t-
q2
p2
)
t(pt+q)2
q2
p2
>1,0<t<1

∴t-1<0.∴u′(t)>0,∴u(t)在(0,1)上單調遞增,∴u(t)<u(1)=0
∴u(t)<0,∴lnt+
1-t
pt+q
<0

即:
x2-x1
px1+qx2
+ln
x1
x2
<0
.∴g′(px1+qx2)<0.
點評:本題考查導數的性質和應用,具有一定的難度,解題時要注意挖掘題設中的隱含條件.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=2-
1
x
,(x>0),若存在實數a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2+log0.5x(x>1),則f(x)的反函數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數的圖象與x軸有兩個不同的交點;
(2)如果函數的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•上海)已知函數f(x)=2-|x|,無窮數列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5:不等式選講
已知函數f(x)=2|x-2|-x+5,若函數f(x)的最小值為m
(Ⅰ)求實數m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 五月天婷婷激情网 | 九色在线观看 | 国产成人精品一区二区三区福利 | 成人在线国产 | 亚洲综合在线视频 | 成人午夜视频在线观看 | 色妞网站 | 亚洲不卡视频 | 欧美三级三级三级爽爽爽 | 日本精品视频 | cao在线| 欧美一区二区在线播放 | 精品九九九 | 久久久精品免费 | 久久九九视频 | 玉足女爽爽91 | 成人午夜精品 | 日本中文字幕在线观看 | 欧美不卡| 一区二区在线视频 | 日韩在线精品视频 | 国产一区在线看 | 久久综合一区 | 视频一二区 | 国产午夜在线观看 | 一区二区国产视频 | 国产免费小视频 | 国产资源在线观看 | 成人综合婷婷国产精品久久 | 五月天婷婷激情 | 国产精品福利在线 | 黄色av免费 | 欧美日韩在线一区 | 午夜黄色小视频 | 99精品欧美一区二区蜜桃免费 | 成人不卡视频 | 亚洲小视频| 成人免费看片视频 | 久久久久久免费 | 日韩专区在线观看 | 奇米av |