日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

設(shè)an=
1•2
+
2•3
+…+
n(n+1)
(n=1,2…)

(1)證明不等式
n(n+1)
2
an
(n+1)2
2
對所有的正整數(shù)n都成立;
(2)設(shè)bn=
an
n(n+1)
(n=1,2…)
,用定義證明
lim
n→∞
bn=
1
2
.
證:(1)由不等式k<
k(k+1)
k+(k+1)
2
=
2k+1
2

對所有正整數(shù)k成立,把它對k從1到n(n≥1)求和,
得到1+2+3+…+n<an
3
2
+
5
2
+…+
2n+1
2

又因1+2+3+…+n=
n(n+1)
2
,以及
3
2
+
5
2
+…+
2n+1
2
1
2
[1+3+5+…+(2n+1)]=
(n+1)2
2

因此不等式
n(n+1)
2
an
(n+1)2
2
.

對所有的正整數(shù)n都成立.
(2)由(1)及bn的定義知
1
2
bn
n+1
2n
=
1
2
+
1
2n
,于是|bn-
1
2
|=bn-
1
2
1
2n

對任意指定的正數(shù)ε,要使|bn-
1
2
|<ε

只要使
1
2n
<ε
,即只要使n>
1
.

取N是
1
的整數(shù)部分,則數(shù)列bn的第N項以后所有的項都滿足|bn-
1
2
|<ε

根據(jù)極限的定義,證得
lim
n→∞
bn=
1
2
.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=
1.2
+
2.3
+…+
n(n+1)
(n∈N×),比較an
n(n+1)
2
(n+1)2
2
的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=
1•2
+
2•3
+…+
n(n+1)
(n=1,2…)

(1)證明不等式
n(n+1)
2
an
(n+1)2
2
對所有的正整數(shù)n都成立;
(2)設(shè)bn=
an
n(n+1)
(n=1,2…)
,用定義證明
lim
n→∞
bn=
1
2
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(ax+b)圖象過點A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
(Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
對一切n∈N*均成立的最大實數(shù)a;
(Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項和,試問是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)an=
1.2
+
2.3
+…+
n(n+1)
(n∈N×),比較an
n(n+1)
2
(n+1)2
2
的大小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 蜜臀av在线播放一区二区三区 | 中文字幕亚洲欧美 | 成人精品一区二区三区中文字幕 | 久久99精品久久久久国产越南 | 日韩高清一区二区 | 久久亚洲一区二区三区四区 | 伊人二区 | 日韩色av | 久精品在线 | 久久99国产精品久久99大师 | 91久久久久久久 | 绯色av一区二区三区在线观看 | 久久99深爱久久99精品 | 毛片网页| 久久www免费人成看片高清 | 一区二区不卡 | 国产美女高潮 | 美女爽到呻吟久久久久 | 亚洲无限资源 | 欧美久久久久久久久中文字幕 | 午夜免费| 亚州av在线| 久久91久久久久麻豆精品 | 黄色毛片在线播放 | 一本一道久久a久久精品综合蜜臀 | 国产高清一区 | 日本欧美一区 | 91视频国产区 | 成人三级av | 中文天堂av | 国产69精品久久久久观看黑料 | 啪啪免费小视频 | 欧美亚洲 | 国产亚洲一区二区三区在线 | 美女视频黄的免费 | 久久久久亚洲国产 | 亚洲va中文字幕 | 成人做爰999| 亚州中文av | 欧美亚洲高清 | 中文字幕综合在线 |