在△ABC中,若sinA=2sinBsinC,且sin2A=sin2B+sin2C,試判斷△ABC的形狀.
解:∵A、B、C是三角形的內角, ∴A=π-(B+C). ∴sinA=sin[π-(B+C)]=sin(B+C) =sinBcosC+cosBsinC=2sinBcosC. ∴sinBcosC-cosBsinC=0. ∴sin(B-C)=0. ∴B-C=0.∴B=C. ∴A=π-2B. ∴sin2A=sin22B=sin2B+sin2C=2sin2B. ∵B=C,∴B是銳角. ∴sin2B= ∴2sinBcosB= ∴cosB= ∴△ABC是等腰直角三角形. 思路解析:利用正弦定理結合三角形中的邊角關系,對△ABC的形狀作出準確判斷. |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com